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EFFICIENT DATA COMMUNICATION PROTOCOLS FOR WIRELESS

NETWORKS

ABSTRACT

In this dissertation, efficient decentralized algorithms are investigated for cost mini-

mization problems in wireless networks. For wireless sensor networks, we investigate

both the reduction in the energy consumption and throughput maximization prob-

lems separately using multi-hop data aggregation for correlated data in wireless sensor

networks. The proposed algorithms exploit data redundancy using a game theoretic

framework. For energy minimization, routes are chosen to minimize the total energy

expended by the network using best response dynamics to local data. The cost func-

tion used in routing takes into account distance, interference and in-network data

aggregation. The proposed energy-efficient correlation-aware routing algorithm sig-

nificantly reduces the energy consumption in the network and converges in a finite

number of steps iteratively. For throughput maximization, we consider both the inter-

ference distribution across the network and correlation between forwarded data when

establishing routes. Nodes along each route are chosen to minimize the interference

impact in their neighborhood and to maximize the in-network data aggregation. The

resulting network topology maximizes the global network throughput and the algo-

rithm is guaranteed to converge with a finite number of steps using best response

dynamics.

For multiple antenna wireless ad-hoc networks, we present distributed cooper-

ative and regret-matching based learning schemes for joint transmit beamformer and

power level selection problem for nodes operating in multi-user interference environ-

ment. Total network transmit power is minimized while ensuring a constant received

signal-to-interference and noise ratio at each receiver. In cooperative and regret-
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matching based power minimization algorithms, transmit beamformers are selected

from a predefined codebook to minimize the total power. By selecting transmit beam-

formers judiciously and performing power adaptation, the cooperative algorithm is

shown to converge to pure strategy Nash equilibrium with high probability through-

out the iterations in the interference impaired network. On the other hand, the

regret-matching learning algorithm is noncooperative and requires minimum amount

of overhead. The proposed cooperative and regret-matching based distributed algo-

rithms are also compared with centralized solutions through simulation results.
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Chapter 1

Introduction

As network architecture becomes more decentralized and nodes are more autonomous

in decision making, efficient distributed algorithms become important for real time

implementation of wireless networks. In designing distributed wireless networks, de-

signers must deal with several big and important issues. Energy efficiency, interference

management, throughput requirements, level of interactions or cooperations between

users, data latency, reliability and quality of service are some of the significant chal-

lenges that should be addressed in a network operating in a multi-user environment.

Game theory can be used to provide a powerful mathematical framework to model

and analyze wireless networks. Interactions between users or nodes can be modeled as

a game among different users and the desired outcome is the steady-state equilibrium

point. In this dissertation, we address some of these important issues mentioned

above in the context of wireless sensor networks (WSNs) and wireless ad-hoc net-

works. Furthermore, we use the principles of game theory to analyze the adaptations

that can occur in such decentralized networks.

WSNs consists of tiny sensor devices that are spatially distributed in large

numbers and in high density in a certain region. Each sensor has a unique ID and a

radio interface which is used to communicate with some of the sensors around it. They

are often deployed in order to cooperatively sense, process and deliver information of

the targeted physical environment to the desired person of interest which is usually

called the sink node. Data collected at a sensor node is routed through intermediate

nodes until it reaches the sink nodes. Due to their vast potential application areas in

environmental and habitat monitoring, surveillance, early disaster warnings, military
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and security, transport and health care to name a few, WSNs have attracted plethora

of research efforts [1] [2]. Some of the properties and requirements that should exist

in protocols designed for WSNs are energy-efficiency, continuous or query and event

driven processing capabilities, distributed solutions using as much local information

as possible and self-organizing processing abilities [1]. Depending on application

requirements, different communication protocols with different objective functions can

be designed using WSNs. Energy-efficiency[3], network lifetime [4], throughput [5],

latency [6], data accuracy [7], capacity [8], end-to-end delay [9] and security [10] are

some of the main objective requirements that are commonly optimized in the context

of WSNs.

Note that the amount of sensory data in WSNs can be large. Therefore, ex-

ploiting the spatial correlation between adjacent nodes can significantly reduce the

amount of data that needs to be transmitted using multi-hop transmission. Problems

such as excessive energy usage, buffer overflow of nodes near sink nodes and loss of

data can be reduced by filtering out the data redundancy. In WSNs, designing data

aggregation trees is a key strategy to reduce the redundancy and network load in

the network [11]. During data aggregation, sensed data gathered at the intermediate

node is combined with data from different sensors and transmitted to the next node

for further processing. One of the most important challenges in designing an efficient

data aggregation scheme is the limited energy supply of each sensor node. There-

fore, it is critical to design energy efficient routing algorithms for data aggregation

in WSNs. The data routing scheme along with the data aggregation model decides

when and where data flows will meet and how data aggregation will be performed.

Our goal in Chapter 3 is to propose an energy-efficient routing scheme for WSNs that

takes advantage of spatial correlation between neighboring nodes and performs data

aggregation accordingly. On the other hand, fast and efficient delivery of data may
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be another important requirement for WSNs when large amounts of data need to be

delivered in a timely or short period of time. In this case, the network should be

able to provide high throughput and timely delivery of the data. In Chapter 4, we

introduce a new data routing algorithm to maximize throughput for correlated data.

In wireless ad-hoc networks operating in a “multi-user” environment (i.e. when

the number of users is larger than one), maintaining a certain quality-of-service for

each receiver is a challenging problem. Fluctuations in the received signal strength due

to channel conditions, interference, other users’ transmission parameters or any other

external obstacle may reduce the efficiency and reliability of wireless networks. Simply

increasing the transmit power for each user is not an applicable solution, because it

also increases the interference in the environment and is also not suitable for battery

power limitations. The design of smart multiple access control algorithms for power

(or energy) efficient communication in wireless ad-hoc networks while guaranteeing

certain reliability constraints is another focus of this dissertation.

Employing multiple-input multiple- output (MIMO) beamforming in wireless

systems maximizes the spectral efficiency and reliability of wireless communication.

MIMO systems have been widely adopted in many future wireless communication

standards (e.g., WiMAX, 3GPP LTE, etc.). Previous works on using MIMO beam-

forming techniques for MIMO communications have shown that there is great promise

in using limited feedback scheme for single user systems. However, in multiuser MIMO

systems, there are significant problems that need to be addressed before multi-user

MIMO algorithms become widely adopted. Some of these problems are interference

mitigation and management, resource allocation issues, amount of feedback informa-

tion needed for the distributed algorithms, energy and power consumption issues and

coordination between users’ strategies in the network. Therefore, addressing all these

problems by designing “efficient” distributed multi-user MIMO algorithms is still an
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open research problem. For this reason, in Chapter 5, we provide efficient power

minimization algorithms for the solution of the joint transmit beamformer and power

adaptation problem in wireless ad-hoc networks while guaranteeing a certain quality

of service to each receiver or user. In our MIMO multi-user algorithms, we address

the recent concerns such as interference management, coordination between users and

resource allocation (transmit power) issues in ad-hoc networks.

1.1 Main Contributions of this Dissertation

To summarize, the main contributions of this dissertation are:

1. In Chapter 3, we introduce an energy-efficient routing scheme for correlated

data for WSNs and establish the convergence to pure Nash equilibrium using

the congestion and potential game formulation.

2. In Chapter 4, we introduce a throughput maximizing correlated data routing

for WSNs, and study the convergence properties using congestion and potential

game formulation. We also derive analytical conditions for Nash equilibrium

solutions for a special network topology.

3. In Chapter 5, we introduce distributed joint transmit beamformer and power

adaptation algorithms for multi-user MIMO wireless ad-hoc networks. For a co-

operative network, we study the probabilistic convergence to an optimal trans-

mit beamformer action profile that minimizes the total network power con-

sumption. For a noncooperative network, we study a regret-matching learning

algorithm where the better transmission parameters (i.e. power and transmit

beamformers) are selected or learned throughout iterations based on the “re-

gret” function.
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Chapter 2

Game Theory Background

In this chapter, we will give background information about the game theoretic con-

cepts used in this dissertation. The readers can also refer to [12] [13] [14] (and

references therein) for a detailed review of concepts.

2.1 Finite Strategic-Form Games

In this dissertation, we only assume finite strategic-form games. A finite strategic-

form game Γ consists of an N-player set P = {P1, ...,PN} where each player Pi ∈ P

has an action set Ai ∈ A and a utility function ui : A → R where A = A1 × A2 ×

...×AN .

In a game, each player Pi ∈ P chooses an action ai ∈ Ai, and receives an utility

ui(a) depending on the strategy profile a = (a1, a2, ..., aN) ∈ A. Let a−i denote the

collection of actions of players other than player Pi, i.e.

a−i = {a1, a2, ..., ai−1, ai+1, ..., aN}.

Note that the action profile a and the utility ui(a) can also be written as (ai, a−i)

and ui(ai, a−i) respectively. Similarly, let P−i = {P1,P2, ...,Pi−1,Pi+1, ...PN} denote

the set of players other than player Pi and let A−i = {A1,A2, ...,Ai−1,Ai+1, ...AN}

the set of all collective actions of all players other than player Pi.
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2.2 Forms of equilibrium

2.21 Nash equilibrium

An action profile a∗ = (a∗i , a
∗
−i) ∈ A is called a pure Nash equilibrium if for all players

Pi ∈ P ,

ui(a
∗
i , a

∗
−i) = max

ai∈Ai

ui(ai, a
∗
−i).

In a Nash equilibrium point, no players have an incentive to unilaterally deviate.

Mixed-strategy Nash equilibrium

Amixed strategy is a probability distribution over pure strategies. In mixed-strategies,

each player’s randomization is statistically independent of those of his opponents, and

the utilities ofmixed strategy profiles are the expected values of the corresponding pure

strategy utilities. Let Φ(Ai) be the set of probability distributions over the action set

Ai and the mixed-strategy of player Pi be defined as χi ∈ Φ(Ai). We denote χ ∈ Φ(A)

to represent a mixed-strategy profile. We denote χi(ai) as the probability that player

Pi will select action ai and
∑

ai∈Ai
χi(ai) = 1. When all players Pi ∈ P are playing

independently, according to their own strategy χi ∈ Φ(Ai), then the expected utility

of player Pi for action probability χi becomes

ui(χi, χ−i) =
∑
a∈A

ui(a)χ1(a1)χ2(a2) . . . χN(aN)

where χ−i = {χ1, . . . χi−1, χi+1, . . . , χN } denotes the collection of action probabilities

of players other than Pi.

Definition 2.2.1. Mixed Strategy Nash Equilibrium: A strategy profile χ∗ = (χ∗
1, χ

∗
2, . . . , χ

∗
N)



7

is called a mixed-strategy Nash equilibrium for all players Pi ∈ P if,

ui(χ
∗
i , χ

∗
−i) ≥ ui(χi, χ

∗
−i), ∀χi ∈ Φ(Ai). (2.1)

2.22 Correlated equilibrium

Nash equilibrium is an equilibrium point under which the players choose their actions

or strategies independently. Assume that, before the game is played, players build a

“signaling device” that sends different but correlated signals (which does not affect

the utilities) to each of them. Then, each player may then choose his action in the

game depending on this “signal”. Notice that if the signals are independent across

the players, it is a Nash equilibrium (in mixed or pure strategies) of the original game.

But the signals could also be correlated, in which case the equilibria is the correlated

equilibrium [15]. Therefore, correlated equilibrium is a broader class of equilibria and

contains the set of Nash equilibria.

Let χ(a) ∈ Φ(A) denote any probability distribution of joint action a and∑
a∈A χ(a) = 1. In the special case when all players Pi ∈ P play independently

according to their personal strategy χi(ai) ∈ Φ(Ai) as is the case for the definition of

Nash equilibrium, then the joint probability distribution is simplified into,

χ(a) = χ1(a1)χ2(a2) . . . χN(aN)

where a = (a1, a2, . . . , aN) and χi(ai) represents the probability that player Pi will

select action ai.

Definition 2.2.2. Correlated Equilibrium: The probability distribution χ(a) ∈ Φ(A)
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is a correlated equilibrium if for all players Pi ∈ P and for all actions ai, a
′
i ∈ Ai,

∑
a−i∈A−i

ui(ai, a−i)χ(ai, a−i) ≥
∑

a−i∈A−i

ui(a
′
i, a−i)χ(ai, a−i), (2.2)

or ∑
a−i∈A−i

ui(ai, a−i)χ(a−i|ai) ≥
∑

a−i∈A−i

ui(a
′
i, a−i)χ(a−i|a′i), (2.3)

where χ(.|.) is the conditional probability.

The condition for correlated equilibrium in (2.3) states that at a probability

distribution χ(ai, a−i) that is a correlated equilibrium, each player P ′
is conditional

expected payoff for action ai is at least as good as his conditional expected payoff for

any other action a′i ̸= ai. In other words, each player Pi does not gain by disobeying

the recommendation to play ai if every other player plays the recommendation.

2.23 Coarse correlated equilibrium

Coarse correlated equilibrium is used to describe a probability distribution on pure

strategy profiles by relaxing the correlated equilibrium condition [13]. In coarse-

correlated equilibrium, the players do not receive any recommendation on how to

play the game, each of them can choose to either adhere to and get the correspond-

ing correlated expected payoff or to deviate based on predictions, by picking some

strategy. The coarse correlated equilibrium conditions state that no player can gain

by unilaterally deviating based on predictions.

Definition 2.2.3. Coarse Correlated Equilibrium: The probability distribution χ(a) ∈

Φ(A) is a coarse correlated equilibrium if for all players Pi ∈ P and for all actions

ai, a
′
i ∈ Ai, ∑

a∈A

ui(ai, a−i)χ(ai, a−i) ≥
∑

a−i∈A−i

ui(a
′
i, a−i)χ−i(a−i) (2.4)
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where

χ−i(a−i) =
∑
a′i∈Ai

χ(a′i, a−i).

Note that χ−i(a−i) ∈ Φ(A−i) denotes the marginal distribution of all players other

than player Pi.

Note that, all correlated equilibria and Nash equilibria are in fact coarse corre-

lated equilibria. If all players select their actions independently, then the definitions

of correlated, coarse correlated, and Nash equilibria become equivalent.

2.3 Classes of games

In this dissertation, we will focus on three different classes of games: identical interest

games, congestion games and potential games.

2.31 Identical Interest Games

In identical interest games, the players’ utilities ui, i = 1, 2, ..., N , are same. In other

words, for some function ϕ : A → R,

ui(ai, a−i) = ϕ(ai, a−i),

for all Pi ∈ P and a ∈ A. All identical interest games have at least one Nash

equilibrium, namely any action profile a that maximizes ϕ(a).

2.32 Potential Games

A potential game is a normal form game such that any changes in the utility function

of any player in the game due to an unilateral deviation by the player is reflected

in a global function. An exact potential game is a special case of potential game.
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A game that has an exact potential function is called an exact potential game. An

exact potential function P(.) is defined as

P : A → R, ∀Pi ∈ P and ai, a
′
i ∈ Ai,

ui(ai, a−i)−ui(a
′
i, a−i) = P(ai, a−i)− P(a′i, a−i).

(2.5)

The above result shows that the gain (or loss) caused by any players unilateral move

is exactly the same as the gain (or loss) in the potential function, which may be

viewed as a global objective function. Note that in potential games, any action

profile maximizing the potential function is a pure Nash equilibrium, hence every

potential game possesses at least one such equilibrium. Some of the properties of

potential games are:

• All NE points are the maximizers of the potential function, either locally or

globally,

• Potential games have at least one pure NE,

• At each step of the potential games, a better response or best response strategy

converges to a NE if each player investigates its strategy space and takes actions

to maximize its utility [16] [17].

2.33 Congestion Games

The congestion game Γ is defined as a tuple (P ,F , (Ai)i∈P , (wf )f∈F) where P =

{P1, . . . ,PN} denotes the set of players, F = {1, . . . ,mf} is the set of facilities and

mf is the number of facilities, Ai ⊆ 2F is the strategy space of player Pi, and wf :

a → R is a cost function associated with using the facility f where a = (a1, . . . , aN)

is a state of the game in which player Pi chooses strategy ai ∈ Ai. We define θf (a) as
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the subset of players directly connected to facility f including the player at facility

f , that is θf (a) = {Pi|f ∈ ai}. The players aim at choosing strategies ai ∈ Ai

minimizing their individual cost, where the total cost Φi(a) of player Pi is given by

Φi(a) =
∑

f∈ai wf (θf (a)). We define utility function for source Yi in our congestion

game as

ui : a → R, ui(ai, a−i) = −Φi(a),

= −
∑
f∈ai

wf (θf (a)),
(2.6)

where a−i = (a1, a2, . . . , ai−1, ai+1, . . . , aN) is the strategy space of player Pi’s oppo-

nents. The game performance is influenced by the selection of cost functions wf (θf (a))

for facilities. In fact, every congestion game is a potential game and every finite po-

tential game is isomorphic to a congestion game [16].

2.4 Repeated Games

In a repeated game, at each iteration n = 0, 1, 2, ..., each player Pi ∈ P chooses

an action ai(n) ∈ Ai based on an iterative update strategy and receives the utility

ui(a(n)) where a(n) = (a1(n), ..., aN(n)). Different learning algorithms can be de-

signed to update the actions of each player based on the information obtained in the

past observations. For example, in Chapter 5, we will discuss a learning algorithm

called regret-matching based learning in which the players choose the actions based

on their “regret” for not choosing other actions.
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2.41 Iterative Updating Strategies

Let T : A → A be any mapping from a subset A ⊆ RN to itself. The updating

scheme of actions for all players Pi ∈ P at iteration n can be defined as

a(n+ 1) = T(a(n)) (2.7)

where a(n) is the vector of actions of the players at iteration n. The equilibria of the

system, if they exists, are the fixed points of mapping T, i.e. they are the vectors a∗

resulting as solution of a∗ = T(a∗).

Nonlinear fixed-point problems can be solved by iterative methods using dis-

tributed algorithms [18] [19]. The most common updating strategies for the actions

a = (a1, a2, . . . , aN) based on mapping T are [18] [19]:

• Jacobi scheme: All components of a = (a1, a2, . . . , aN) are updated simultane-

ously,

• Gauss-Seidel scheme: All components of a = (a1, a2, . . . , aN) are updated se-

quentially, in a round-robin fashion, i.e. one after the other

• Totally asyncronous scheme: All components of a = (a1, a2, . . . , aN) are up-

dated totally asynchronous way. In this scheme, some components of ak may

be updated more frequently than others, and possibly outdated information on

the other components can be used.

Note that Totally asyncronous scheme contains the Jacobi and Gauss-Seidel

schemes as special cases. In general, these schemes converge to the fixed point under

different conditions [18] [19].
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Chapter 3

Energy-Efficient Routing for Wireless Sensor Networks

3.1 Introduction

In wireless sensor networks (WSNs), data from different nodes in a region are highly

correlated. For example, if the data are random variables, e.g. temperature mea-

surements, the measured values at nodes are spatially and temporally correlated.

Transmitting all sensor data can increase traffic and data redundancy at the desti-

nation nodes. This may result in high energy consumption for the overall network.

WSNs can benefit from multi-hop routing by using data aggregation along the route

from the furthest sensor node to the network sink. In such a scenario, besides energy,

correlation awareness is a significant feature that should be taken into consideration

in routing in multi-hop WSNs. The routing decisions can significantly change when

data aggregation is involved [20].

Most routing algorithms in WSNs aim to minimize the total transmission cost

of transporting the data collected by nodes in a distributed manner. Routing pro-

tocols have been proposed for WSNs emphasizing various metrics depending on the

application and design specifications. Energy-efficient routing algorithms allow WSNs

to be deployed with smaller battery packs and to achieve longer lifetime for a given

battery size [1] [2]. One classical energy-efficient routing algorithm is minimum en-

ergy routing (MER). The MER algorithm has been used to minimize transmission

energy [21] [22] [23].

Routing with data aggregation aims to find the optimum network topology for

maximum correlated data gathering to reduce the cost function in resource-limited
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sensor networks. Not surprisingly, correlation awareness has a great impact on routing

algorithms and hence deserves a careful study in multi-hop WSNs. Recent work has

looked at exploiting the data correlation by using data aggregation along the multi-

hop path [3] [24] [25] [26] [27].

Scaglione and Servetto [24] study the interdependence of routing and data

aggregation based on information theoretic analysis. Luo et al. [25] consider both

transmission cost and aggregation cost during the decisions of each node on the

routing process. Cristescu et al. [3] construct an optimal network correlated data

gathering tree. The general cost minimizing optimization problem is shown to be NP-

complete even for the simplifying assumption of the self coding model. The optimal

solution is found to be between the shortest path tree (SPT) and the solution to

the traveling salesman path. The authors propose different heuristic approximation

algorithms to construct correlated data gathering trees and compare them with a

simulated-annealing based algorithm which is proposed as a performance benchmark

since the optimal routing solution is NP-hard.

Von Rickenbach and Wattenhofer [26] propose an optimal minimum energy

gathering algorithm (MEGA) for foreign coding data aggregation model and an ap-

proximation algorithm called low energy gathering algorithm (LEGA) for self coding

data aggregation model. In these data aggregation models, there is a restricted con-

text of data aggregation. Once data is aggregated, it is not possible to alter the

packet again in another node throughout the route, hence re-encoding is not pos-

sible. Based on the foreign coding model, the authors are proposing MEGA which

requires maintenance of two trees, the coding tree which is simply a directed min-

imum spanning tree for raw data and the SPT for aggregated data. On the other

hand, using the self coding model, the authors propose LEGA which uses a shallow

light tree as the data gathering algorithm and achieves a 2(1 +
√
2) approximation
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ratio. Although both MEGA and LEGA are optimal and near optimal approximation

algorithms under their respective data aggregation models, their performance dete-

riorates in highly dense networks or in high correlation environments. The reason is

that data redundancy among all nodes can not be exploited efficiently. Each source

node can only aggregate once, hence its redundancy with other nodes (other than the

next hop node) can not be eliminated.

Pattem et al. [27] investigate several tree construction schemes like routing-

driven aggregation, aggregation-driven routing and static cluster-based routing for

WSNs. Routing-driven aggregation performs opportunistic data aggregation over

SPT, maximum data aggregation with minimum Steiner tree like routing is performed

using aggregation-driven routing, and a static cluster-based routing is proposed that

achieves near-optimal performance for diverse correlation levels. Unlike data aggre-

gation models like foreign coding and self coding, in [20] [25] and [27], the authors

also explore the in-network aggregation at several hops. The proposed models allow

data aggregation (or data compression) at several hops, allowing greater reduction of

the data.

This chapter extends the work above by proposing an energy-efficient routing

strategy for correlated data gathering using amulti-hop data aggregation model which

relies on the source data correlation between neighbor nodes. It differs from prior

work by taking into consideration both the energy metric, interference and opportu-

nity for multi-hop data aggregation. The routing algorithm incorporates correlation

awareness into the system to minimize energy expenditure. A simple game-theoretic

model with utility functions that account for data correlation is developed. Numerical

studies are used to evaluate the performance of different routing algorithms and the

potential advantages of our proposed approaches are presented.
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3.2 System Model

Our focus is on applications where joint data aggregation and routing is applicable

for data gathering in WSNs. Images collected by different sensor nodes in a video

surveillance and image based tracking systems, or the collection of environment data

measurements like temperature, humidity, vibration, sound or light from a field of

sensors are possible application scenarios.

The collected data can be aggregated and routed in order to decrease redun-

dancy. Therefore, we consider the problem of maximum correlated data gathering

with a single sink, to which all the data has to be sent. All source nodes in the

network collect, transmit and aggregate data. The total number of source nodes is

N . Let V be the set of all nodes, which includes source nodes and one sink node,

and E be the set of edges, or possible links among nodes. An edge is assumed to

exist between two nodes if they are within communication range. Let |A| denote the

number of elements of set A. Then |V | = N + 1, and |E| ≤ N(N + 1)/2. Define

the network graph G = (V,E). We assume that R ⊂ V is the set of source nodes,

where |R| = N . The sources are labeled Y1 through YN . For the sake of simplicity,

we assume there is only single sink labeled D where the data from all the nodes has

to arrive. The algorithm proposed in this chapter can be extended to the case where

there are multiple sinks and data from different subsets of nodes has to be sent into

different sinks. All nodes are randomly distributed over a specified region.

In the following, we develop an algorithm that minimizes the total network

energy. For the algorithm, we assume that there is a target bit error rate (BER)

which ensures successful communication across a link. Our system has perfect error

detection but no error correction capability. Automatic retransmission request is used

so that a packet with error is retransmitted until received correctly. Suppose that
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the packet length is M . Then the probability of correct reception of the packet is

Pc(γ) = (1 − 2BER(γ))M where BER(γ) is bit error rate corresponding to a sig-

nal to interference and noise ratio (SINR) γ. The BER(.) function will depend on

the modulation scheme and the noise and interference environment. In this chap-

ter, we assume a CDMA system, for which cumulative interference can be assumed

to be Gaussian. We use non-coherent frequency shift keying modulation for which

BER(γ) = 0.5 exp(−0.5γ) under Gaussian noise and interference. This equation can

be used to find a target SINR γ∗ for the system.

Our system uses synchronous direct-sequence CDMA (DS-CDMA) where nodes

use variable spreading sequences. The spreading factor for each transmitter, L, can be

adjusted to meet the target quality-of-service (QoS) (or target SINR) requirements.

The minimum spreading gain between the nodes Yi and Yj to reach a certain target

SINR, γ∗, is [28]

Li,j =
γ∗
[∑N

k=1,k ̸=i,j hk,jPk

]
hi,jPi − γ∗σ2

, (3.1)

where the link gain hi,j = 1/dpi,j, di,j is the distance of between the nodes Yi and

Yj, p is the path loss exponent, which is usually between 2 and 4 for free-space

and short-to-medium-range radio communication and σ2 is the thermal noise power.

The transmission rate, or bit throughput between nodes Yi and Yj in bits-per-second

(bps) is determined by the spreading rate Li,j: Ωi,j = W/Li,j where W is the system

bandwidth.

The energy per bit per packet transmission, which has units of Joule/bits,

represents the total amount of energy consumed in order to deliver one data bit

to the destination. This chapter considers only the energy used for transmission,

neglecting the energy used with reception and data processing. The energy per bit

Ei,j
b for packet transmissions between nodes Yi and Yj can be defined similarly as



18

in [28]:

Ei,j
b =

MPi

mΩi,jPc(γ)
, (3.2)

where M is the packet length, m is the information bits in a packet, Pi is the constant

transmit power for all Yi, i = {1, 2, ..., N}.

To quantify the amount of data generated by each sensor node and data ag-

gregation along the route, sources are associated with their data rates or weights as

defined in [25]. It is assumed that data collected by the sensor nodes is correlated

over geographical regions. Therefore, depending on the density of the WSNs in the

field, the readings from nearby nodes may be highly correlated and hence contain

data redundancies. Each source node Yi generates data at a certain rate Ψ(Yi), where

Ψ(Yi) is the data rate of source Yi. It is important to note that data rate Ψ(Yi) refers

to rate of symbol encoding of source Yi, not the rate of data transmission. The data

rate Ψi(Yi) shows the average number of bits per symbol used to encode the data

source and has units bits/symbol. As shown in Fig. 3.1, the source nodes represented

with circles in the network can either send their own raw data directly into the sink,

or if there are other source nodes connecting to it, they can use the raw or aggre-

gated data from other nodes to aggregate. Then, the aggregated data is sent to the

sink along the node’s route. Our main focus is on minimizing total network energy

expenditures.

3.21 Data Aggregation Model

In this chapter, correlated data from multiple nodes is aggregated into one compressed

data stream in order to reduce the network load. For data aggregation, we adopt the

lossless step-by-step multi-hop aggregation model introduced in [25]. In this approach,

each source node aggregates its data with that of the child nodes in a step-by-step
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Figure 3.1: An example of data gathering tree. Data generated by encoder of each
source node arrives at sink D by data aggregation through intermediate source nodes.

fashion. Let Ψ(Yi) denote the rate of data generated by node Yi. Let Yi be the set

of node Yi and all child nodes of node Yi. Define Ψi(Yi) as the net data rate at

node Yi due to data generated by node Yi and its child nodes, after the aggregation

process is done. For instance, suppose that node Yi has q child nodes Y1, Y2, ..., Yq.

Then Yi = {Yi, Y1, Y2, ..., Yq}. The data received from a child node Yk, k = 1, .., q

will be data aggregated from node Yi and all of its child nodes, Ψi(Yi). If Yi is
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a leaf node with no child nodes, then it will forward only data generated by itself,

Ψi(Yi) = Ψ(Yi).

The aggregation of q multiple inputs with source node Yi is performed step

by step with each node taking their turns depending on their arrival times. The

parent node first aggregates its own data with newly received data. Then, the parent

node aggregates the result with another node’s data that arrives next. Therefore,

for example in Fig. 3.1, node Y3 first aggregates data from node Y2 with its original

data because it has no subtree and will probably arrive first. Then, node Y3 saves

the aggregated data as its temporary data rate as Ψtemp(Y3); and so node Y3 will

aggregate it again with the data at node Y1 and send the final result with data rate

Ψ3(Y3), along its path for possible further aggregation until sink D. At the end of

the aggregation process, the total data rate of node Y3 becomes Ψ3(Y3). Multi-hop

data aggregation discussed above is repeated at every intermediate source node along

the route.

The reason for step by step aggregation of multiple inputs rather than joint

aggregation schemes like the differential entropy model [29] is that storing multiple

sources’ data and aggregating them at once requires large memory and power for

sensors. Moreover, the data reported with different nodes will arrive at the parent

node at different times due to intermediate nodes’ signal processing, distance between

nodes, wireless medium characteristics, error-control schemes, interference, noise or

transmitted powers.

Let Ψtemp(Yi, Yj) be the temporary data rate of a node after data generated

by node Yi is aggregated with data from one of its child nodes Yj. This data rate is

calculated as [25]:

Ψtemp(Yi, Yj) = max (Ψ(Yi) ,Ψ(Yj)) + (1− ρi,j)min (Ψ(Yi),Ψ(Yj)) , (3.3)
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where ρi,j is the correlation coefficient between nodes Yi and Yj. Similar to [25], in

order to distinguish the correlation between the raw data and aggregated data, we use

a “forgetting” factor for aggregated data. The correlation between aggregated data

at two parent nodes is only a fraction of the data correlation calculated according to

their distance.

3.3 Efficient routing framework for energy minimization

3.31 Energy per symbol and symbol throughput

Two components of the network will determine the energy consumption per symbol

transmission of a node, namely the data rate of sources and transmission energy.

Given the correlation models in Section 3.21, the energy per symbol transmission

between nodes Yi and Yj, accounting for data redundancy through correlation can be

defined as

Ei,j
s (Ψi(Yi)) = Ei,j

b

[
Joule

bits

]
Ψi(Yi)

[
bits

symbol

]
,

=
MPi

m Ωi,j Pc(γ)
Ψi(Yi)

[
Joule

symbol

]
,

(3.4)

where Ψi(Yi) is the aggregated data rate at node Yi and Yi is the set of all q sources

using node Yi including Yi, i.e. Yi = {Yi, Y1, Y2, . . . , Yq}. The energy per symbol

required has units Joule/symbol and indicates the total amount of per joule of energy

consumption in order to deliver one data symbol to the destination without an error.

Similar to the definition of energy per symbol, the symbol throughput of a link
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between nodes Yi and Yj is defined as

ζi,j(Ψi(Yi)) =
W

Li,j

[
bits

second

]
1

Ψi(Yi)

[
symbol

bits

]
,

=
Ωi,j

Ψi(Yi)

[
symbol

second

]
.

(3.5)

The symbol throughput has units symbol/second and symbolizes the total amount of

symbol transmitted per second to the destination. Note that in a routing problem,

the symbol throughput of data ζi generated by source Yi is defined as the minimum

of the symbol throughput of all links on the route from source Yi to the data sink D,

since the link with the least symbol throughput determines the symbol throughput

of each source. This link is the bottleneck link for that particular source node. Note

that the bottleneck throughput of nodes that are connecting to sink via same node is

same and is the minimum of all bottleneck throughput of all nodes whose paths are

connected to sink via same node.

3.32 Optimization Problem

The energy minimization problem in the network and physical layers can be formu-

lated as follows:

Minimize
Si∈Xi

N∑
i=1

∑
k,l∈Si

Ek,l
s (Ψk(Yk)),

subject to SINRk,l ≥ γ∗, Pk = C,

(3.6)

where SINRk,l is the received SINR at node Yl for the link between nodes Yk and

Yl, Pk = C is the constant transmit power of node Yk, k = {1, 2, ..., N}, Yk is

the set of all sources connected directly into node Yk and including node Yk, i.e.

Yk = {Yk, Y1, Y2, . . . , Yq}, Si is the set of relaying and aggregating nodes used for
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source Yi, and Xi is the set of all possible relaying and aggregating nodes for a route

of source Yi.

The optimum routing solution is hard to determine when each sensor uses the

data aggregation model in Section 3.21 since at each route, multi-hop aggregation is

employed. The joint optimization of transmission cost and data aggregation is shown

to be NP-complete even for simplistic assumption of self-coding data aggregation

model [3]. Therefore, finding the optimal energy minimization algorithms is a NP-

hard optimization problem. Consequently, the solution we propose is a decentralized

energy minimization algorithm using correlation structure of the network. We propose

a game theoretic formulation which can be shown to converge to a local optimal

solution with relatively low complexity and in a distributed fashion.

Game theoretic interpretation

The above problem can be formulated as a congestion game model which can be

shown to be isomorphic with a potential game. In this game, the players are the

source nodes in quest for routes, the source nodes used throughout the route are the

shared facilities, the action of the players is the selection of a group of facilities that

form a route into the sink, and costs can be associated with various route selections.

Formally, the proposed game-theoretic routing model for correlation aware

routing considers the route selection of each sensor node as a congestion game Γ as

defined in Section 2.33 with a player set P = N where N = {Y1, . . . , YN} denotes the

set of players, i.e. the source nodes in our game, a set of facilities F = {1, . . . ,mf},

the strategy (or action) space Ai = Xi of player (or source node) Yi, and the cost

function wf : S → R associated with using the facility f where a = S = (S1, . . . , SN)

is a state of the game in which player Yi chooses strategy (or action) Si ∈ Xi. We

define θf (S) as the subset of sources nodes directly connected to facility f including
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the source node at facility f , that is θf (S) = {Yi|f ∈ Si}. The players aim at choosing

strategies Si ∈ Xi minimizing their individual cost, where the cost δi(S) of player Yi

is given by δi(S) =
∑

f∈Si
wf (θf (S)). We define utility function for source Yi in our

congestion game as

ui : S → R, ui(Si, S−i) = −δi(S),

= −
∑
f∈Si

wf (θf (S)),
(3.7)

where S−i = (S1, S2, . . . , Si−1, Si+1, . . . , SN) is the strategy space of player Yi’s oppo-

nents. The game performance is influenced by the selection of cost functions wf (θf (S))

for facilities. We propose and compare several metrics in the next section.

3.4 Facility cost selection for the congestion game

We consider the problem of constructing the minimum energy correlated data gather-

ing tree. In setting up the costs for facilities, we can consider the following parameters:

1. Energy spent for relaying bits or symbols on outgoing links from the facility,

2. Opportunity for aggregation.

3.41 Minimum Energy Routing

The classic approach is to consider only energy minimization. We denote this classic

approach as MER (e.g. [21] [22]). For MER, the following utility function is used

ui(Si, S−i) = −
∑
f∈Si

Ef
b , (3.8)
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where Ef
b is the cost of using the link of facility f , i.e. energy per bit required on

ongoing links from facility f, through the strategy (or route) Si and S−i.

3.42 Correlation-aware routing for energy minimization

In WSNs, constructing the correlated data gathering routes is an important task

for cost minimization [3] [29]. To account for data correlation and potential for

data aggregation in the network, we propose correlation-aware routing (CAR) game

formulation for the solution of energy per symbol minimization problem of (3.6). For

CAR, given a network, the problem is to induce the formation of a maximal correlated

data aggregation tree from each reporting sensors (sources) to the sink. For CAR, we

define the cost of using the link of facility f

wf (Ψf (θf (S))) = Ef
b Ψf (θf (S)),

= Ef
s (Ψf (θf (S))),

(3.9)

where Ψf (θf (S)) is the total aggregated data rate at facility f . The utility function

ui(Si, S−i) of source Yi is given by

ui(Si, S−i) = −
∑
f∈Si

(
wf (Ψf (θf (S)))− wf (Ψf (θ

−i
f (S)))

)
,

= −
∑
f∈Si

Ef
b [Ψf (θf (S))−Ψf (θ

−i
f (S))],

(3.10)

where Ψf (θ
−i
f (S)) is the total aggregated data rate at facility f when source Yi is not

present. Note that when Yi is not present on facility f , all the sub-trees rooted at Yi

are pruned because we are interested in the correlation contribution of only node Yi

(see Fig. 3.2). Each player aims to choose the strategy Si ∈ Xi to maximize its utility

function, to find the best routes that will result in maximum data aggregation.
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Figure 3.2: Pruning of the subtree rooted at Yi to calculate Ψf (θ
−i
f (S)) over facilities

{Yi, f2, f3, f4} ∈ Si.

Potential Game Formulation for CAR

Nash equilibrium (NE) represents a stable state in which no player wishes to leave

unilaterally its own strategy in order to improve the value of its utility function. In

certain classes of games, the game converges to a NE when a best or better response

adaptive strategy is employed. In what follows, we show that the congestion game

associated with CAR is isomorphic with a potential game, for which a best response

strategy is shown to converge to a NE. More specifically, we can show that games

defined within these algorithms are exact potential games, by defining an exact poten-

tial function which is the optimization target minimization of the game, that exactly

reflects changes in individual utility functions.

A potential game as defined in Section 2.32 is a normal form game such that

any changes in the utility function of any player in the game due to an unilateral
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deviation by the player is reflected in a global function. We assume that in the

normal form game each player takes actions sequentially and at each stage of the

game players choose their actions which improve their utility functions.

Generally in potential games, the updating procedure is carried out sequen-

tially. Note that, while sequential updates may require additional synchronization

overhead, a simple approximation implementation may be based on randomized access

which on average will result in sequential updates. This can be shown experimentally

to have minimal impact on convergence properties [30]. We will demonstrate that

correlation aware routing with utility functions given by (3.10) is an exact potential

game (EPG) with the exact potential function,

P(Si, S−i) = −
mf∑
f=1

wf (Ψf (θf (S))), (3.11)

where mf is the total number of facilities used in the directed graph G and mf = N

since all nodes are used as a facility in the network.

Theorem 3.4.1. CAR defined by utility function (3.10) and the potential func-

tion (3.11) is an EPG.

Proof. See Appendix 3.A.

Corollary 3.4.2. CAR always has NE and converges to NE strategies by using a best

response adaptive strategy.

Corollary 3.4.3. Any NE of the CAR is locally optimal, i.e. in a NE, all the players

can’t reduce the energy unilaterally and thus the game reaches a local minimum total

energy for CAR.

Each source Yi ∈ N in CAR algorithm updates its strategy Si through maxi-

mization of its corresponding utility (3.10). Hence, at each iteration, each user finds
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the best routes (sequential updates) that will increase its utility. From Theorem 3.4.1,

the potential function P(Si, S−i) will continue to increase until it reaches a local maxi-

mum point using best response dynamics. Since the potential function of any strategy

profile is finite, it follows that every sequence of improvement steps and the number

of iterations to converge is finite due to the finite improvement property (FIP) of best

response dynamics in congestion games [12] [16].

One of the primary drawback of the most best response strategies like CAR al-

gorithm introduced here, is the computational complexity, which grows linearly with

the cardinality of the strategy space i.e. the network size N . To address this issue,

for large network sizes, the search for better routes can be restricted on k-hop neigh-

borhood nodes Nk(Yi) of each source node Yi in order to reduce the computational

complexity. This is based on the observation that a node is highly correlated within a

certain radius of its neighborhood. This is a natural assumption for sensor networks,

since the correlation decreases with the increase of the distance between nodes, hence

the local correlation is dominant. Better response can be another improvement of

the best response, where at each step, the player updates as long as the randomly

selected strategy yields a better performance. The dramatically reduced computation

is the tradeoff with the convergence speed. Moreover, there may be multiple NE in a

potential game and the performance of different equilibria may vary.

The procedure for sequential updates of routes with best response dynamics of

CAR can be summarized as following:

Initialization : Construct minimum energy routes using the distributed algorithms

like Dijsktra’s Algorithm [18]. Then, use the following iterations for energy minimiza-

tion.

Repeat : At each iteration n.
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• For each of the source node Yi, i ∈ {1, 2, ..., N},

1. Select Si ∈ Xi that maximizes the utility function in (3.10).

2. Update routing strategy Si for source Yi.

Until : The stopping criteria ∆ is met.

The stopping criterion ∆ is the minimum number of iteration steps κ for the

algorithm to converge, where κ is a counter which adds one after each updating

process.

The total network energy consumption per symbol transmission for CAR al-

gorithm is

Etotal,CAR
s =

(
mf∑
f=1

wf (Ψf (θf (S)))

)
. (3.12)

The symbol throughput of source Yi is

λi = min
∀k,l∈Si

ζk,l and Si ∈ Xi. (3.13)

The total symbol throughput in the network is the symbol throughput of sum of

bottleneck throughput of each source, i.e.

ζtotal =
N∑
i=1

λi. (3.14)

3.43 Minimum Energy Data Gathering Algorithm (MEGA)

MEGA is an algorithm that tries to minimize the aggregation and raw data costs

jointly using foreign coding aggregation model [26]. In foreign coding aggregation

model, once aggregated data is not aggregated again over the next facilities. The
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resulting topology is a combination of two tree constructions, namely the coding tree

and the shortest path tree (SPT) (or in our results MER tree) (also see Fig. 3.3).

The coding tree is for the aggregation of the raw data and the MER (or SPT) tree

is for the aggregated data. Define the set of facilities used for MER tree of node Yi

as Mi and coding tree as Ci and the strategy of each source node Si. With foreign

coding data aggregation model, the utility function of MEGA is

ui(Si, S−i) = −Ei,j
b Ψi(Yi)− [(1− ρi,j)Ψi(Yi)]

∑
f∈Mj

Ef
b , (3.15)

where ρi,j is the correlation coefficient between nodes Yi and Yj and Yj ∈ Ci, where

Yj the next hop node of Yi in the coding tree. In other words, MEGA tries to find

the next hop Yj that minimizes total energy consumption over the coding tree Ci and

MER tree Mj of node Yj.

After constructing the coding trees according to utility function of (3.15) for

MEGA, the total energy per symbol consumption in the network is

Etotal,MEGA
s =

N∑
i=1,
j∈Ci

Ei,j
b Ψi(Yi) +

[(1− ρi,j)Ψi(Yi)]
∑
f∈Mj

Ef
b

 . (3.16)

The symbol throughput of each source Yi is calculated as the minimum through-

put of multi-hop links from each source to the sink. The links of each source Yi con-

sists of the the links in the coding tree Ci and MER tree Mj of next hope node Yj.

Therefore, the symbol throughput of source Yi is given in (3.13) and the total symbol

throughput in the network is given in (3.14).
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Figure 3.3: Multiple transmissions using two different links from node Yi in MEGA.
The coding tree is shown with dashed arrows and MER tree is with solid arrows.

3.5 Simulation Results

In this section, we present an extensive set of numerical results to evaluate the per-

formance of our proposed CAR algorithm with the other classical approaches, MER

and MEGA. For MER and CAR algorithms, the data generated by each source is

aggregated in multiple nodes throughout the route to the sink using the aggregation

model in Section 3.21. For nodes randomly deployed in a 2D field, the impact of

network size and correlation coefficient and number of iterations required to converge

for different algorithms are compared. In accordance with design parameter, the per-

formance of our proposed CAR algorithm is compared in terms of improvements in

energy savings with MER and MEGA.

For fair comparison of the all algorithms, the total network energy per symbol is

compared under a constant total symbol throughput ζtotal =
∑N

i=1 λi requirement. In
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other words, the total effective energy per symbol of all algorithms is compared when

the total amount of symbol obtained per each second is same for all the algorithms.

Therefore, by this way, the energy and throughput gains are incorporated into one

performance metric of effective energy improvements.

3.51 Simulation Setup

The number of sensor nodes in the network is varied between N = 10 to N = 40,

which is uniformly distributed over a square area of dimension 40m × 40m. We

adopt Gaussian random field data correlation model that is frequently encountered

in practice [29]. In this model, correlation coefficient ρi,j between nodes Yi and Yj

decreases exponentially with the increase of the distance between nodes di,j, i.e. ρi,j =

exp(−d2i,j/c) where c is the correlation constant where c = 0m2 corresponds to no

aggregation, c = 100m2 corresponds to low correlation and c = 1000m2 corresponds

to high correlation environment. The path loss exponent p = 2. In simulations, we

use a “forgetting” factor of 0.8 per link, that is, if data is aggregated at a node Yi, then

the correlation ρi,j between that node’s aggregated data and its parent node Yj in

the routing tree is reduced to 0.8 of its original value. The noise power is σ2 = 10−13

Watts, which corresponds to thermal noise power for a bandwidth of W = 1 Mhz.

We choose the equal transmit powers of all nodes to be 110 dB above the noise floor

(Pi = 10−2 Watts, ∀i ∈ N ). The target SINR is selected to be γ∗ = 5 (7 dB).

We assume that each packet contains 80 bits of information and no overhead (i.e.,

m = M = 80). The generated raw data rate of each source, Ψ(Yi), is assumed to

be constant for all Yi ∈ N and without loss of generality, each symbol is represented

with 1 bit of information, i.e. Ψ(Yi) = 1 bits/symbol. The total effective energy

consumption of all algorithms are compared when the required symbol throughput is

ζtotal = 100 kbps. The results are simulated and averaged over 100 different network
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configurations for each routing algorithm.

The MER algorithm uses Dijkstra’s algorithm to find the best routes from

sink to source nodes with one iteration. Although MER was not proposed in the

context of data aggregation, we set-up the paths according to their corresponding

utility functions, and then aggregate data opportunistically based on the routes set-

up, this approach is called routing-driven aggregation [27]. MEGA is obtained after

MER is constructed, hence the required number of iterations for convergence is two.

CAR is implemented iteratively based on the best response strategy described in

the previous section. Note also that, we start CAR algorithm with the same tree

structure as MER respectively, hence at first iteration their total effective energy

values are equal. MEGA uses foreign coding model, i.e. the aggregation is performed

only at next hop, while CAR and MER performs the multi-hop aggregation model

described in Section 3.21.

Through multiple iterations, the algorithms change the initial routing tree.

Fig. 3.4 demonstrates the branches of the constructed trees for MER, MEGA and

CAR algorithms under the same network topology for N = 30, c = 1000. Thick

lines indicate the regions where the data aggregations are performed. Note that for

MEGA, coding tree is shown with dashed lines, whereas MER tree is shown with solid

lines. The results show that different routing metrics with different utility functions

lead to paths with significantly different trees or network connectivity. For example,

MER tends to discover paths with lower energy while CAR searches for minimum

energy routing paths to aggregate more efficiently.

3.52 Effective Energy Improvements

Fig. 3.5 shows the total effective energy per symbol in the network for CAR, MER

and MEGA versus increasing number of nodes from N = 10 to N = 40 in the
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Figure 3.4: Selected paths of each source and the tree structures of different routing
strategies for N = 30, c = 1000. (a) MER. (b) CAR. (c) MEGA.

network for three data correlation settings (c = 0, c = 100 and c = 1000). The energy

improvements returned by CAR algorithm over MER and MEGA algorithms increase

gradually as the network size grows. The reason is that MER algorithm is optimized

only for routing whereas MEGA and CAR algorithms are optimized for both data

aggregation and routing. However, MEGA does not perform multi-hop aggregation

and its performance deteriorates at large network sizes. For example for N = 10,

the percentage improvement of CAR algorithm compared to MER is 4.31 percent

and compared to MEGA is 14.30 percent, whereas for N = 40 the improvements
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are around 25.35 and 52.18 percent compared to MER and MEGA respectively, at

c = 100. Note also that MEGA’s performance increases as the correlation constant

increases and is almost same with MER algorithm at c = 1000 even though MER

algorithm performs multi-hop data aggregation. The reason is that it can optimize

both data aggregation and routing more efficiently at higher correlation levels.
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Figure 3.5: Total effective energy versus number of nodes, N.

Note that effective energy incorporates both the energy and throughput gains

of the above mentioned algorithms into one performance metric. At low correlations,

effective energy improvements of CAR algorithm over MER algorithm are higher than

the effective energy improvements at high correlations. The reason is that at high

correlation levels, correlation between all nodes is so high that no matter which path

is used for data aggregation and routing, the transmitted data rate can be reduced

significantly. Therefore, there is not much room for further improvement by choosing a

better path using the CAR algorithm after MER is established at strong correlation

levels. For example, if full data aggregation is performed, i.e. when c → ∞, the



36

performance of all algorithms are expected to perform same. From Fig. 3.5, we also

see that compared to no data aggregation case, i.e. c = 0, the improvements of CAR

algorithm is 93.15 percent for c = 100 and 96.29 percent for c = 1000 when N = 40.

These results show the significant performance gain and advantage of performing in-

network data aggregation of correlated data compared to no aggregation schemes in

the network.

3.53 Impact of Correlation Coefficient

Fig. 3.6 shows the total effective energy of CAR, MER and MEGA algorithms as

the correlation constant c increases from 0 to 1000 for different network sizes. The

performances of all algorithms improve as the data correlation becomes larger for the

same network size. This shows that the routing algorithm performances can greatly

benefit from data aggregation by reducing redundancy among correlated data. Note

that MEGA and CAR algorithms benefit more from the correlation increments than

the MER algorithm since both algorithms are optimized for data aggregation. For

example, for correlation parameter of c = 200, the percentage energy improvements

of CAR over MER and MEGA are on the order of 16.73 and 31.46 for network size

of N = 20 respectively, whereas, for correlation parameter of c = 800, the percentage

improvements are 16.36 and 16.61 respectively. Moreover, the percentage improve-

ments of CAR at c = 1000 are 16.70 and 10.40 compared to c = 0 (no aggregation)

case when N = 20 and N = 10 respectively. MER and CAR algorithms achieve less

energy consumptions for the smaller network size (N = 10) than larger network size

(N = 20) under all correlation situations. In this case, both the additional number

of transmissions and the interference in the network increase with increasing number

of nodes which is observed from Fig. 3.5.
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Figure 3.6: Total effective energy versus correlation constant (c).

3.54 Convergence of the Algorithm

In addition to the effectiveness of CAR, the number of iterations for the convergence

of the proposed distributed algorithm is also important. In this section, we show the

minimum number of required iterations for the convergence of the CAR algorithm for

different network sizes. Fig. 3.7 shows the normalized effective energy consumptions

of CAR compared to MER versus number of iterations. The minimum number of

iterations κ required for the total effective energy to converge is 3 to 4 iterations for

the network size ranging from 10 to 40 nodes.

The existence of NE for CAR algorithm is supported by the convergence of

curve of Fig. 3.7. Furthermore, CAR algorithm involve small number of iterations

after MER is established, and it can be implemented efficiently in a distributed fash-

ion.
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Figure 3.7: Normalized effective energy consumption of CAR with respect to MER
versus number of iterations for c = 1000.

3.6 Conclusions

In this chapter, we addressed the problem of efficient transmission structure in wireless

sensor networks where each source transmits and aggregates the correlated data over

intermediate nodes to the sink. We have investigated the impact of efficient data

aggregation in establishing routing paths towards the sink for energy minimization

problem. For correlation aware routing, we have proposed a distributed iterative

protocol based on a game theoretic framework, which is shown to converge within a

couple of iterations. We have also shown that, by accounting for correlation structure

and multi-hop aggregation in constructing routes, significant effective energy gains

over classic approaches can be achieved.
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Appendix 3.A: Proof of Theorem 3.4.1

Suppose there exists a potential function of the congestion game Γ:

P(Si, S−i) = −
∑
f∈F

wf (Ψf (θf (S))), (3.17)

where f is the facility and F is the set of facilities as defined in Section 3.32. Let Si ∈ S

be the strategy of source Yi, i = 1, ..., N , i.e. the collection of nodes used for relaying

and aggregating and S ′
i ∈ S’ be another strategy where S’ = (S1, ..., Si−1, S

′
i, Si+1, ..., SN).

Then,

P(Si, S−i) =−
∑
f∈F

wf (Ψf (θf (S))),

=

−
∑

f∈Si\S∗

wf (Ψf (θf (S)))

+

−
∑

f∈S′
i\S∗

wf (Ψf (θ
−i
f (S)))−

∑
f∈S∗

wf (Ψf (θf (S)))

+

−
∑

f∈F\{Si
∪

S′
i}

wf (Ψf (θ
−i
f (S)))

 ,

(3.18)

where S∗ denotes the common facilities used by the strategies Si and S ′
i, i.e. S∗ =

Si

∩
S ′
i. Define,

Q(S−i,−i′) = −
∑

f∈F\{Si
∪

S′
i}

wf (Ψf (θ
−i
f (S))). (3.19)
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Then,

P(Si, S−i) =

−
∑

f∈Si\S∗

wf (Ψf (θf (S)))


+

−
∑

f∈S′
i\S∗

wf (Ψf (θ
−i
f (S)))−

∑
f∈S∗

wf (Ψf (θf (S)))


+Q(S−i,−i′).

(3.20)

If source Yi changes its strategy from Si to S ′
i, then the potential function becomes,

P(S ′
i, S−i) =

−
∑

f∈Si\S∗

wf (Ψf (θ
−i
f (S′)))

+

−
∑

f∈S′
i\S∗

wf (Ψf (θf (S
′)))−

∑
f∈S∗

wf (Ψf (θf (S
′)))


+Q(S−i,−i′).

(3.21)

Note that Q(S−i,−i′) and −
∑

f∈S∗ wf (Ψf (θf (S
′))) are not affected by the strategy

changing of source Yi. Therefore,

P(S ′
i, S−i)− P(Si, S−i) =

−
∑

f∈Si\S∗
i

wf (Ψf (θ
−i
f (S′)))−

∑
f∈S′

i\S∗

wf (Ψf (θf (S
′)))

−

−
∑

f∈Si\S∗

wf (Ψf (θf (S)))−
∑

f∈S′
i\S∗

wf (Ψf (θ
−i
f (S)))

 .

(3.22)
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From (3.10) and the definition for wf (.) in (3.9),

ui(S
′
i, S−i)− ui(Si, S−i) =

−
∑
f∈S′

i

(
wf (Ψf (θf (S

′)))− wf (Ψf (θ
−i
f (S′)))

)−

(
−
∑
f∈Si

(
wf (Ψf (θf (S)))− wf (Ψf (θ

−i
f (S)))

))
,

=

−
∑

f∈S′
i\S∗

(
wf (Ψf (θf (S

′)))− wf (Ψf (θ
−i
f (S′)))

)−

−
∑

f∈Si\S∗

(
wf (Ψf (θf (S)))− wf (Ψf (θ

−i
f (S)))

) ,

=

−
∑

f∈Si\S∗

wf (Ψf (θ
−i
f (S)))−

∑
f∈S′

i\S∗

wf (Ψf (θf (S
′)))


−

−
∑

f∈Si\S∗

wf (Ψf (θf (S)))−
∑

f∈S′
i\Si

wf (Ψf (θ
−i
f (S′)))

 .

Note that

−
∑

f∈Si\S∗

wf (Ψf (θ
−i
f (S))) = −

∑
f∈Si\S∗

wf (Ψf (θ
−i
f (S′))),

and

−
∑

f∈S′
i\Si

wf (Ψf (θ
−i
f (S′))) = −

∑
f∈S′

i\Si

wf (Ψf (θ
−i
f (S))).

Hence,

ui(S
′
i, S−i)− ui(Si, S−i) = P(S ′

i, S−i)− P(Si, S−i). (3.23)

Then, P(Si, S−i) defined in (3.11) is an EPG of game Γ.
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Chapter 4

Throughput Maximization for Correlated Data Routing in Wireless

Sensor Networks

4.1 Introduction

Wireless sensor networks (WSNs) are used primarily for collecting environmental

information. In large scale WSNs, a large number of small-sized and low-powered

sensor nodes are deployed over a geographical area. Each sensor node consists of

data sensing, processing and communication parts. By sensing a geographical area,

the data generated by each sensor has to be transmitted into the sink nodes, possibly

in a multi-hop fashion.

Sensor nodes in a certain region have knowledge of only nodes in their neighbor-

hoods, so efficient optimization of communication patterns, like resource allocation

and network connectivity is best accomplished in a distributed manner. Efficient

decentralized routing algorithms are required for WSNs which use minimum commu-

nication overhead. The main goal of most routing algorithms in WSNs is to minimize

the total transmission cost of transporting the data collected by nodes. Different

objectives can be assigned for many routing protocols emphasizing various metrics

depending on the application requirements in WSNs. For example, low-latency can

be an important task for early disaster warning applications and in timely detection

of events where the data generated by sensors need to be delivered to the sink nodes

as quickly as possible, energy-efficiency may be crucial for network lifetime of sen-

sor nodes for periodic monitoring situations. Reliable communication, support for

mobility, robustness or fault-tolerance can be other application requirements.
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One classical approach for an energy-efficient routing algorithm is minimum

energy routing (MER). The MER algorithm has been used to minimize transmission

energy [23]. Interference-aware routing (IAR) strategies are shown to achieve better

performance results than MER for ad hoc networks [28] [31]. Mahmood et al. [28]

studied the impact of interference on performance of multi-hop wireless ad-hoc net-

work. They showed that by taking the interference into consideration, routes derived

from the optimization problem often yield noticeably better throughput than the min-

imum energy path route. Kwon et al. [31] take into account the interference created

by existing flows in the network. The improvement in overall network performance is

obtained by finding paths to detour automatically around a congested hot-spot area

in the network. However, interference aware routing has not been explicitly studied

in the context of WSNs.

In-network data aggregation is a technique used in WSNs to eliminate data re-

dundancy [11], minimize energy [26] or improve the network lifetime [4]. Using proper

in-network data aggregation techniques may significantly reduce the amount of data

transmission and communication load, hence improve networks’ overall performance.

WSNs can also benefit from multi-hop routing by using multi-hop data aggregation

en-route to the sink. Therefore, besides energy and interference awareness, correla-

tion awareness is an significant feature that should be taken into consideration in

routing for multi-hop WSNs. Multi-hop data aggregation is more suitable for ap-

plications when a strong correlation exists in the sensor readings, or for collecting

summarized data when some of the measurements are more important, for example

highest temperature sensor reading (for fire alarm warnings). The routing decisions

can significantly change when data aggregation is involved [5] [20].

The network load and redundancy among sensed data can be reduced by ex-

ploring the data correlation and using in-network processing through sensor routing
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algorithms. In network processing of sensor data increases the amount of data pro-

cessing within the network, but can reduce the amount of traffic in the network sig-

nificantly. The relationships between data aggregation and routing have been studied

extensively under various circumstances [3] [6] [11] [25] [32].

Goel et al. [32] present a randomized logarithmic approximation algorithm

when the joint entropy of multiple sources if a concave function of the number of

sources. Luo et al. [25] consider both transmission cost and aggregation cost during

the decisions of each node on the routing process. General cost minimizing optimiza-

tion problem is shown to be NP-complete in [3]. Duarte-Melo et al. [8] present trivial

upper bound of data throughput per source as W/N (W is the transmission capacity

and N is the number of nodes), which can be achieved when the sink is 100% busy

in receiving for many-to-one communications. This upper bound is achievable under

certain conditions such as when all sources can directly (via single hop) transmit to

the sink node. The authors also present different upper bounds if communication

occurs in multi-hop for a randomly deployed network communication [8]. In [6] [20]

and [25], the authors are exploring the in-network aggregation at several hops. The

proposed models allow data aggregation at several hops which allow greater data

compression.

In many large and dense WSN applications, it is of interest to maximize the

total aggregated data rate at which the network can support efficient delivery of large

amounts of data. Moreover, in time-critical applications, sensor data must be de-

livered with time constraints so that appropriate actions can be taken in real-time

(after time deadline the data may be useless) [33]. In certain delay constraints, sen-

sor network should be able to maintain a certain throughput in order to satisfy the

quality-of-service (QoS) requirements and to guarantee the stability of the network

while satisfying latency constraints in a practical system. Note that maximizing
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throughput and minimizing energy consumption are usually conflicting to each other

and a trade-off is involved for data collection in WSN applications. It is important

to evaluate the energy-throughput trade-offs for data gathering in WSNs. For ex-

ample, Yu et al. [6] explores the energy-latency trade-offs of packet transmission by

minimizing overall energy cost of sensor nodes subject to latency constraints.

In most related papers discussed above, either by using simplistic aggregation

models, correlation-awareness is not exploited efficiently for in-network data aggrega-

tion or no explicit solutions are proposed for throughput efficiency taking into con-

sideration energy, interference impact and opportunity for data aggregation. In this

chapter of the dissertation, we propose an efficient throughput maximization routing

strategy for data gathering in sensor networks where correlated data is periodically

flowed from a set of sources to a common sink over a tree-based routing topology.

Toward this end, correlated data gathering tree is constructed using a multi-hop data

aggregation model for the routing problem. The routing algorithm developed can

also be combined for interference and correlation awareness to maximize the through-

put. We design a suitable utility function such that when each node optimizes its

own utility function, this leads to optimization of the global objective function dur-

ing the route construction process. Extensive simulations were conducted for both

proposed and other classical routing algorithms and significant throughput gains are

obtained under a wide range of system setups. We also compare our proposed routing

algorithms with the optimal routing solution for a small network size. Although the

optimal routing solution requires a centralized implementation and is NP-complete,

it provides a performance benchmark for the proposed routing algorithms’ results.
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4.2 System Model

In WSNs, the data collection can be triggered either by external sources like queries

or events or by continuous monitoring without external triggering. The collected

correlated data can be aggregated during routing in order to decrease redundancy

of released traffic. For continuous monitoring, communication is sustained over long

periods of time, and throughput or bandwidth utilization are often not the biggest

concern in the network due to the slow rate at which data is collected. Some appli-

cations, however, may require higher data rates or generate bursty traffic which must

reach the sink node by a deadline. For example, in query or event-driven models

throughput and bandwidth utilization can be an important concern for the timely

delivery of the data.

We consider the problem of correlated data gathering for throughput maximiza-

tion with a single sink, to which all the data has to be sent in a static wireless sensor

network. This many-to-one communication where data from a set of sources are col-

lected at a single node is known as data gathering tree [11]. We consider a system

with two types of nodes: source nodes, Yi ∈ NS, which collect and transmit data and

have the capability to aggregate data, and relay nodes, Yi ∈ NR, which do not gen-

erate data themselves but transmit data from other nodes in the network where NS

is the set of source nodes and NR is the set of relay nodes. For the sake of simplicity,

we assume there is only single sink labeled D which is the destination for the data

from all the nodes. Let N be the set of all nodes, which includes source nodes, relay

nodes and one sink node, and E be the set of edges, or possible links among nodes.

Define the network graph G = (N , E). Let |A| denote the number of elements of set

A. Then |N | = N + 1, and |E| ≤ N(N + 1)/2. There are |NS| = α source nodes,

and |NR| = N −α relay nodes in the network. The ratio of source nodes to all nodes
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is defined as φ = α/N . The sources are labeled Y1 through Yα and the relays are

labeled Yα+1 through YN . We assume that the network graph is connected, i.e. there

always exists a communication link between any pair of nodes Yi and Yj in N .

In the following, we develop an algorithm that maximizes the total network

throughput. For the algorithm, we assume that there is a target bit error rate (BER)

which ensures successful communication across a link. Automatic retransmission re-

quest is used so that a packet with error is retransmitted until received correctly.

Suppose that the packet length is M . Then the probability of correct reception of

the packet is Pc(γ) = (1−BER(γ))M where BER(γ) is bit error rate corresponding

to a signal-to-interference and noise ratio (SINR) level γ. The BER function will

depend on the modulation scheme and the noise and interference environment. In

this chapter, we assume a code-division multiple access (CDMA) system, for which

cumulative interference can be assumed to be Gaussian. We use non-coherent fre-

quency shift keying modulation for which BER(γ) = 0.5 exp(−0.5γ) under Gaussian

noise and interference. This equation can be used to find a target SINR γ∗ for the

system.

Our system uses synchronous direct-sequence CDMA (DS-CDMA) where nodes

use variable spreading sequences. The spreading factor for each transmitter, L, can be

adjusted to meet the target quality-of-service (QoS) (or target SINR) requirements.

The minimum spreading gain between the nodes Yi and Yj to reach a certain target

SINR, γ∗, is [28]

Li,j =
γ∗
[∑N

k=1,k ̸=i,j hk,jPk

]
hi,jPi − γ∗σ2

, (4.1)

where the link gain hi,j = 1/d2i,j and di,j is the distance of between the nodes Yi and

Yj and σ2 is the thermal noise power. The transmission rate, or the bit throughput

between nodes Yi and Yj in bits-per-second (bps) is determined by the spreading rate
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Li,j: Ωi,j = W/Li,j where W is the system bandwidth and same for all Yi.

Most of the traffic generated by sensor nodes is correlated data destined for

the sink. The energy per bit per packet transmission, which has units of Joule/bits,

represents the total amount of energy consumed in order to deliver one data bit to

the destination. The energy per bit Ei,j
b for packet transmissions between nodes Yi

and Yj can be defined as [28]:

Ei,j
b =

MPi

mΩi,jPc(γ)
, (4.2)

where M is the packet length, m is the information bits in a packet, Pi is the constant

transmit power for all Yi, i = {1, 2, ..., N}.

To quantify the amount of data generated by each sensor node and data ag-

gregation along the route, sources are associated with their data rates or weights as

defined in [25]. It is assumed that data collected by the sensor nodes is correlated over

geographical regions. Therefore, depending on the density of the WSNs in the field,

the readings from nearby nodes maybe highly correlated and hence contain data re-

dundancies. Each source node Yi generates data at a certain rate Θi(Yi), where Θi(Yi)

is the data rate of source Yi. The data rate Θi(Yi) shows the average number of bits

per symbol used to encode the data source and has units bits/symbol. Any source

node can aggregate data. In Fig. 4.1 source nodes are represented with circles and

relay nodes are represented with plus signs. Source nodes can either send their own

raw data directly to the sink, or they can forward their data to intermediate source

nodes or relay nodes. Source nodes will aggregate all incoming data from other nodes

with their own data, relay nodes do not perform aggregation. Then, the aggregated

or relayed data is sent to the sink along the receiving node’s route. The focus of this

chapter is on increasing total network throughput.
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4.21 Data Aggregation Model

In this chapter, correlated data from multiple nodes is aggregated into a single stream

of data in order to reduce the network load for the set of wireless sensors organized as

a tree. For data aggregation, we adopt the lossless step-by-step multi-hop aggregation

model introduced in [25]. In this approach, each source node aggregates its data with

that of the child nodes sequentially. Relay nodes only convey the data and do not

perform data aggregation. Note that Θi(Yi) denotes the rate of data generated by

node Yi. Node Yj becomes a child node of node Yi if node Yj forwards its data to

node Yi. Let Yi be the set of node Yi and all child nodes of node Yi. Without loss

of generality, the generated raw data rate of each source, Θi(Yi), is assumed to be

constant for all Yi ∈ N and each symbol is represented with µ bit of information,

i.e. Θi(Yi) = µ bits/symbol. We assume that data aggregation at an intermediate

source node is performed only after all input data is received from its children. Define

Θi(Yi) as the net data rate at node Yi due to data generated by node Yi and its child

nodes, after the aggregation process is done. For instance, suppose that node Yi has

q child nodes Y1, Y2, ..., Yq. Then Yi = {Yi, Y1, Y2, ..., Yq}. The data received from

a child node Yj, j = 1, .., q will be data aggregated from node Yj and all of its child

nodes, Θj(Yj). If Yj is a leaf node with no child nodes, then it will forward only

data generated by itself, Θj(Yj) = Θj(Yj). The aggregated data is transmitted to

the parent node.

The aggregation of q inputs with source node Yi is performed step by step with

each node taking their turns depending on their arrival times. The parent node first

aggregates its own data with newly received data. Then, the parent node aggregates

the result with another node’s data that arrives next. Therefore, for example in

Fig. 4.1, assume that data from node Ym arrives at node Y1 before data from Yi.
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Node Y1 first aggregates data from node Ym with its original data. Node Y1 saves the

aggregated data to temporary storage and aggregates it again with data from node

Yi. The resulting data, with data rate Θ1(Y1) is sent along its path to the sink D. If

there are other source nodes on the path, multi-hop data aggregation is repeated at

every intermediate source node along the route.

The reason for step by step aggregation of multiple inputs rather than joint

aggregation schemes like the differential entropy model [29] is that storing multiple

sources’ data and aggregating them at once requires large memory and power for

sensors. Moreover, the data reported from different nodes will arrive at the parent

node at different times due to processing and transmission delays at intermediate

nodes.

Let Θtemp(Yi, Yj) be the temporary data rate of a node after data generated

by node Yi is aggregated with data from one of its child nodes Yj. This data rate is

calculated as [25]:

Θtemp(Yi, Yj) = max (Θi(Yi) ,Θj(Yj)) + (1− ρi,j)min (Θi(Yi),Θj(Yj)) , (4.3)

where ρi,j is the correlation coefficient between nodes Yi and Yj and is a function of

distance between these two nodes. In order to distinguish the correlation between the

raw data and aggregated data, we use a “forgetting” factor for aggregated data [25].

The correlation between aggregated data at two parent nodes is only a fraction of the

data correlation calculated according to their distance.

In this chapter, we assume only all the generated and aggregated data around

the network is forwarded towards the sink node to ensure more uniform data collection

across the network. This means that a source nodes’ throughput is constrained not

only by the throughput on the path from that node to the sink, but also by the
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throughput at which it receives data from its child nodes towards the edges of the

network. In most scenarios, the bottleneck link for a route is the link connecting it to

the sink, therefore this assumption does not affect the network throughput in most

scenarios.

The branches of the network are distinct clusters of nodes rooted at node Yi

that are one hop from the sink D (see Fig. 4.1). A branch is denoted by Bi, i =

{1, 2, 3, ...,Υ} where Υ is the total number of branches in the network. A branch Bi

represents the set of nodes in the tree. The total throughput in the network is the

sum of the throughput of all sources in all branches. The throughput of every source

node is limited by the bottleneck throughput on the branch it is attached to.

D

Yα
Yα-2

Yα-1

Y1

Y2

Yi

Branch B1
Branch B2

Prune 

subtree 

of Yi

Si

Relay

Sink

Sensor

Ym

Figure 4.1: An example of data aggregation tree structure with two branches and
pruning of the subtree rooted at Yi to calculate λ−i(S) over facilities {Yi, Y1} ∈ Si.

4.3 Efficient routing framework for throughput maximization

4.31 Symbol Throughput and Energy per Symbol

Two components of the network will determine the symbol throughput of a node,

namely the data rate of sources (or the weight of sources) and bit throughput or
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transmission rate. Given the correlation models in Section 4.21, the symbol through-

put of a link between nodes Yi and Yj is defined as

ζi,j(Θi(Yi)) =
Ωi,j

Θi(Yi)
,

=
W

Li,jΘi(Yi)

[
symbol

second

]
,

(4.4)

where Θi(Yi) is the aggregated data rate at node Yi and Yi is the set of all q sources

using node Yi including Yi, i.e. Yi = {Yi, Y1, Y2, . . . , Yq}. The symbol throughput

has units symbol/second and symbolizes the total amount of symbol transmitted per

second to the destination.

The energy per symbol transmission between nodes Yi and Yj can be defined

as

Ei,j
s (Θi(Yi)) = Ei,j

b

[
Joule

bits

]
Θi(Yi)

[
bits

symbol

]
,

=
MPi

m Ωi,j Pc(γ)
Θi(Yi)

[
Joule

symbol

]
.

(4.5)

The energy per symbol required has units Joule/symbol and indicates the total

amount of per joule of energy consumption in order to deliver one data symbol to the

destination without error.

4.32 Optimization Problem

Let S = (S1, S2, ..., Sα) and Si represent the set of all sources and relays used for

source Yi along its path into the sink node in a connected tree network topology.

Let X = (X1, X2, ..., Xα) and Xi be the set of all possible source and relay nodes for

a route of source Yi. SINRi,j is the received SINR at node Yj for the link between

nodes Yi and Yj, and Pi = C is the constant transmit power of node Yi ∈ N . Yi
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denotes the set of all sources or relays connected directly to node Yi including Yi, i.e.

Yi = {Yi, Y1, Y2, . . . , Yq}. Let there be nBi
source nodes in a branch Bi and assume

node Yi uses the branch Bi. Note that Bi = Bj if nodes Yi and Yj are using the same

branch.

The throughput maximization problem in the network and physical layers can

be formulated as

Maximize
S∈X

Υ∑
i=1

nBi
λBi

(S),

subject to SINRi,j ≥ γ∗, ∀(Yi, Yj) ∈ S,

Pi = C, ∀Yi ∈ N ,

(4.6)

where λBi
is the bottleneck throughput of branch Bi for the set of active links S,

λBi
(S) = min

Yi∈Bi

min
(Ym,Yn)∈Si

ζm,n(Θm(Ym)), (4.7)

and ζm,n(Θm(Ym)) is the symbol throughput between nodes Ym and Yn defined

in (4.4). Note that every branch in the tree may have a different number of sources

and communication structures between those sources and may have different bottle-

neck throughput. However, the bottleneck throughput of all sources in a branch will

be the same.

As the min or max function is not differentiable, distributed solutions based on

gradient algorithms are not directly applicable to the optimization problem in (4.6).

One solution is to use sub-gradient algorithms to solve the min-max problem in a dis-

tributed manner [34]. However, the number of iterations required for convergence is

substantial. Another solution is to approximate the min-max function using smooth-

ing functions [4], but this approach requires special network topologies and data
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correlation models, and has not yet been extended to general network structures.

Optimal Routing Solution

The optimum routing tree in a wireless sensor network with a single sink can be found

using the brute force approach. A centralized agent selects all possible routes for each

node to maximize the overall throughput,

(S∗
1 , S

∗
2 , ..., S

∗
α) = argmax

S∈X

Υ∑
i=1

nBi
λBi

(S), (4.8)

where X and S are defined above. A combination S = (S1, S2, ..., Sα) ∈ X is a

profile and the brute force approach to solve the problem is to investigate all profiles

exhaustively.

The optimum solution is hard if each sensor uses the data aggregation model

in Section 4.21 since at each route, multi-hop aggregation is employed along each

route. Moreover, finding the optimal solution is harder if the interference level in

the network changes dynamically, for example when users use relay nodes in the net-

work. Note that ζi,j(Θi(Yi)), the symbol throughput between nodes Yi and Yj defined

in (4.4), will change if the source node uses one of the relaying nodes. This is be-

cause activating a relay node will change the interference level on all the links in the

network. The joint optimization of transmission cost and data aggregation is shown

to be NP-complete even for simple data aggregation models [3]. Therefore, finding

the optimal throughput maximization algorithm is a NP-hard combinatorial opti-

mization problem. Next, we will introduce a decentralized throughput maximization

algorithm using correlation structure of the network. We propose a game theoretic

formulation which can be shown to converge to a local optimal solution with relatively

low complexity in a distributed fashion.
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Game theoretic interpretation

The above problem can be formulated as a congestion game model which can be

shown to be isomorphic with a potential game. In this game, the players are the

source nodes in quest for routes, the shared facilities are source nodes and relaying

nodes, the actions of the players are the selection of a group of facilities that form

a route, and costs can be associated with various route selections. Formally, the

proposed game-theoretic routing model for throughput maximizing correlation aware

routing considers the route selection of each sensor node as a congestion game Γ

as defined in Section 2.33. The game Γ is a tuple (Ns,F , (Xi)i∈Ns , (wf )f∈F) where

Ns = {Y1, . . . , Yα} denotes the set of players, i.e. the source nodes in our game,

F = {1, . . . ,mf} is the set of facilities, Xi ⊆ 2F is the strategy space of player

Yi ∈ Ns, and wf : S → R is a cost function associated with using the facility f .

S = (S1, . . . , Sα) is a state of the game in which player Yi chooses strategy (or route)

Si ∈ Xi. We define ∆f (S) as the subset of nodes directly connected to facility f

including the node at facility f , that is ∆f (S) = {Yi ∈ N|f ∈ Si}. The players

choose strategies Si ∈ Xi to minimize their individual cost, where the cost δi(S) of

player Yi is given by δi(S) =
∑

f∈Si
wf (∆f (S)).

We define utility function for source Yi in our congestion game as

ui : S → R, ui(Si, S−i) = −δi(S),

= −
∑
f∈Si

wf (∆f (S)),
(4.9)

where S−i = (S1, S2, . . . , Si−1, Si+1, . . . , Sα) is the strategy space of player Yi’s op-

ponents. The game performance is influenced by the selection of cost functions

wf (∆f (S)) for facilities. We propose and compare several metrics in the next section.
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4.4 Facility cost selection for the congestion game

We consider the problem of constructing the maximum correlated data gathering with

minimum interference tree for throughput maximization. In setting up the costs for

facilities, we can consider several parameters like symbol throughput obtained on links

along the route, interference and energy impact of the facility of the neighborhood

network, or correlation awareness and opportunity for data aggregation.

4.41 Minimum Energy Routing (MER)

The classical approach to routing in WSNs is to consider only energy minimization.

We denote this classic approach as MER (e.g. [21] [22]). For MER, the following

utility function is used

ui(Si, S−i) = −
∑
f∈Si

Ef
b , (4.10)

where Ef
b is the cost of using the link of facility f , i.e. energy per bit required on

ongoing links from facility f, through the strategy (or route) Si and S−i.

4.42 Interference Aware Routing (IAR)

Adding relays to a network complicates the interference pattern. Unlike source nodes,

relays only transmit and cause interference to other links if they are part of the route

of one or more source nodes in the network. In forming minimum energy routes, the

MER algorithm does not take into account the interference that a relay node might

generate if it is used. For this reason, Interference Aware Routing (IAR) algorithm

have been proposed in the context of ad hoc networks [28]. For IAR, the following
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utility function is attempted to be maximized by each source Yi

ui(Si, S−i) = −
∑
f∈Si

ηfE
f
b , (4.11)

where ηf is the normalized density of the nodes in a certain region. If the neighbor-

hood is defined as circular region with radius Dr, ηf approximates the density of the

nodes in a node’s vicinity and represents an estimate of the interference impact a node

has on its neighbors [28]. Note that this approach results in simple implementation

and requires only local data. It was shown in [28] [31] that considering interference

impact gives higher average throughput for overall network compared with MER for

ad hoc networks. However, it is not clear if this is an optimum solution for WSNs,

since sources generate correlated data and aggregation occurs at intermediate source

nodes.

4.43 Throughput maximizing correlation-aware routing algorithm (T-

CAR)

To account for data correlation and potential for data aggregation in the network for

the solution of the bottleneck throughput maximization problem described in (4.6),

we propose throughput maximizing correlation aware routing (T-CAR). Note that

nBi
is the number of source nodes in a branch Bi. The cost of using the branch Bi is

defined as:

wBi
(λBi

(S)) = −nBi
λBi

(S). (4.12)

Let λ−i
Bi
(S) denote the bottleneck throughput of branch Bi when source node Yi

is not present for the same set of state S. When Yi is not present on facilities f ∈ Si,
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all the sub-trees rooted at Yi are pruned (see Fig. 4.1). Note that, λ−i
Bi
(S) is calculated

only when the data aggregation weights are updated in the absence of source Yi and

its sub-tree. On the other hand, for this calculation, the spreading gains between

links will not be affected. The reason is that we are interested in the correlation

contribution in terms of generated data rate of only node Yi and its sub-tree. Then,

the utility function ui(Si, S−i) of source Yi is defined as

ui(Si, S−i) = −
(
wBi

(λBi
(S))− wBi

(λ−i
Bi
(S))

)
,

= nBi
λBi

(S)− (nBi
− ni)λ

−i
Bi
(S),

(4.13)

where ni is the number of source nodes on the subtree rooted at source node Yi

including Yi. Hence, each player Yi in the network wants to find the best strategy

Si ∈ Xi searching over all branches Bi, i = {1, 2, ...,Υ} that gives maximum utility

defined in (4.13).

An alternative approach, which considers both opportunities for aggregation

and interference impact, is throughput maximizing interference and correlation aware

routing (T-ICAR). T-ICAR is a combination of T-CAR and IAR. The solution pro-

vided by this algorithm consists of constructing the maximum correlated data gath-

ering using the idea of T-CAR algorithm and minimum interference impact relaying

nodes, as in the IAR algorithm. So, T-ICAR is simply adding correlation-awareness

into IAR which is constructed at the start of iterations. The utility function for

T-ICAR algorithm is same with T-CAR, i.e. defined by (4.13). The only difference

between T-ICAR and T-CAR algorithms is the starting trees in the first iteration.

T-ICAR starts with IAR tree and T-CAR algorithm starts with DIRECT tree where

all nodes transmit directly into sink node or with MER tree.
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4.44 Potential Game Formulation

In certain classes of games, the game converges to a NE when a best or better response

adaptive strategy is employed. In what follows, we show that the congestion game

associated with T-CAR (or T-ICAR) is isomorphic with a potential game, for which

a best response strategy is shown to converge to a NE.

Potential games as defined in Section 2.32 are games in which players converge

to a pure strategy NE by following a sequence of improvement paths. We assume that

in the normal form game each player takes actions sequentially and at each stage of

the game players choose their actions which improve their utility functions. Potential

games have the fundamental property that a NE always exists. Most of the learning

algorithms for a potential game guarantee convergence into a (pure) NE point.

In a potential game, as defined in Section 2.32, if a player unilaterally changes

its strategy, the change in the objective function would be equal to the change in

the potential function. Generally in potential games, the updating procedure is car-

ried out sequentially. Note that, while sequential updates may require additional

synchronization overhead, a simple approximation implementation may be based on

randomized access which on average will result in sequential updates. This can be

shown experimentally to have minimal impact on convergence properties. Next, we

demonstrate that T-CAR with utility functions given by (4.13) is an exact potential

game (EPG).

Theorem 4.4.1. T-CAR with utility function defined by (4.13) is an EPG with

potential function,

P(Si, S−i) = −
Υ∑
i=1

wBi
(λBi

(S)), (4.14)
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where wBi
(λBi

(S)) = −nBi
λBi

(S).

Proof. See Appendix 4.A.

Therefore, from Theorem 4.4.1, T-CAR always has at least one (pure) NE and

converges to NE strategies by using a best response adaptive strategy. Each source

Yi ∈ Ns in T-CAR algorithm updates its strategy Si through maximization of its

corresponding utility (4.13). Hence, at each iteration, each user finds the best routes

(sequential updates) that will increase its utility. From Theorem 4.4.1, the potential

function P(Si, S−i) will continue to increase until it reaches a local maximum point

using best response dynamics [12] [16].

In summary, T-CAR algorithm constructs the routing tree in two parts: first,

an arbitrary initial routing tree is constructed, and second, routing decisions of each

node are updated with nodes adapting in turns. The procedure for sequential updates

of routes with best response dynamics of T-CAR can be summarized as follows:

Input : A connected network G.

Output : A throughput maximizing data gathering tree of G.

Initialization : Find an initial spanning tree T . We assume that DIRECT routing

tree where all sensor nodes can be initialized to connect to the sink node directly or

MER tree can be employed at the initialization stage for the initial spanning tree.

Then, use the following iterations for throughput maximization (T-CAR).

Repeat : At each iteration n.

• For each of the source node Yi ∈ Ns,

1. Select Si ∈ Xi that maximizes the utility function in (4.13) for T-CAR.

2. Update routing strategy Si for source Yi and form the corresponding tree

structure.
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Until : The stopping criteria ∆ is met.

The stopping criterion ∆ is the minimum number of iteration steps κ for the

algorithm to converge, where κ is a counter which adds one after each updating

process.

The total symbol throughput in the network is defined as the total bottleneck

throughput of each source in the tree,

ζtotal =
α∑

i=1

λi(S), (4.15)

where λi(S) = λBi
(S) for Yi ∈ Bi and λBi

is defined in (4.7).

4.45 Dynamic Network Management

Although, we have focused on how to build an efficient throughput maximizing rout-

ing tree for aggregating data in a stationary environment, the proposed algorithm can

also be used to accommodate the inherent dynamic topology of the sensor network

such as sink mobility or duty schedules. We assume that each node retrieve up-to-

date topology information within a certain region with cell radius Dr, for example

the information about the corresponding total cost functions of using each individual

node, or the duty schedules of nodes which determines whether they are active or not

around this region. Note that in sensor networks, data correlation decreases with dis-

tance between nodes, hence local correlation is dominant. Therefore, in large network

sizes, a node is highly correlated within a certain radius of its neighborhood. When

each node is making decisions about its next hop at the beginning of each iteration,

the nodes can determine if the nodes around has new, broken or modified links. After-

wards, the nodes can execute the routing decisions using updated link costs and lists

at the end of the iteration, hence the proposed algorithm can dynamically reconfigure
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the network to maximize the throughput.

4.46 Condition for the Nash equilibrium strategy

Thus far, we have shown that a NE strategy exists for T-CAR when players use the

proposed utility function. In this section, we want to address the question under

which conditions the NE strategy exists and give an upper bound for the correlation

coefficient for the NE condition. It is difficult to address the NE point for random

network configurations, therefore we focus on NE conditions for a special configuration

namely, DIRECT transmission in which case all nodes transmit to sink node directly.

Proposition 4.4.2. : Let Sdirect be the selected strategy for each source Yi, ∀i ∈ Ns

in a given graph G where all nodes communicate directly with sink node. Then, the

set of state Sdirect = {S1, S2, ..., Sα} is a NE solution when

Li,j < Lj,D(2− ρi,j) and ρi,j <
2Lj,D

Li,D + Lj,D

= ηi,j, ∀ Yi, Yj ∈ Ns and Yi ̸= Yj,

(4.16)

and when

Li,j > Lj,D(2− ρi,j) and ρi,j >
2Lj,D

Li,D + Lj,D

= ηi,j, ∀ Yi, Yj ∈ Ns and Yi ̸= Yj,

(4.17)

where Li,D and Li,j are the minimum spreading gains between nodes Yi and the sink

node D and nodes Yi and Yj respectively for all sources Yi, Yj ∈ Ns.

Proof. Let us assume that there exists a strategy S ′
i ∈ Xi where node Yi changes

its strategy from direct transmission and connects through node Yj into sink node

D. The corresponding strategy set is denoted by S′ = {S1, S2, ..., S
′
i, Sj, ..., Sα} and



63

the utility function of Yi for the new strategy S ′
i is ui(S

′
i, S−i). If Sdirect is the NE

strategy, then ui(S
′
i, S−i) < ui(Si, S−i) must hold for all Yi ∈ Ns. Note that in S′, the

bottleneck link can be either the link between nodes Yj and D (case I condition) or

the link between nodes Yi and Yj (case II condition).

In case I condition, the corresponding utilities for these two different strategies

are ui(Si, S−i) = Ti and ui(S
′
i, S−i) = 2T ′

j − Tj where Ti = λBi
(Sdirect) and Tj =

λBj
(Sdirect) are the corresponding symbol throughput of nodes Yi and Yj respectively

when the strategy set is Sdirect and T ′
j = λBj

(S′) is the symbol throughput for node

Yj when the strategy set is S′ where the bottleneck link is between nodes Yj and D.

Denote T ′
i = W/(Li,jµ) as the symbol throughput between nodes Yi and Yj. From

case I condition, T ′
j < T ′

i hence Li,j < Lj,D(2 − ρi,j). Moreover, from the condition

ui(S
′
i, S−i) < ui(Si, S−i),

2T ′
j − Tj < Ti,

2W

Lj,D(µ+ (1− ρi,j)µ)
− W

µLj,D

<
W

µLi,D

,

2

Lj,D(2− ρi,j)
<

1

Li,D

+
1

Lj,D

,

2Li,D

Lj,D + Li,D

< (2− ρi,j),

(ρi,j − 2) < − 2Li,D

Lj,D + Li,D

,

ρi,j <
2Lj,D

Lj,D + Li,D

= ηi,j.

(4.18)

This completes the proof of (4.16).

In case II condition, the bottleneck link is between nodes Yi and Yj. Therefore,

the corresponding utilities for these two different strategies are ui(Si, S−i) = Ti and



64

ui(S
′
i, S−i) = 2T ′

i − Tj where T ′
i = λBj

(S′) is the symbol throughput between node

Yi and Yj when the strategy set is S′. The symbol throughput between nodes Yj

and D is T ′
j = W/(Li,jµ(1 + (1 − ρ))). From case II condition, T ′

i < T ′
j which gives

Li,j > Lj,D(2− ρi,j). Moreover, from the condition ui(S
′
i, S−i) < ui(Si, S−i),

2T ′
i − Tj < Ti,

2W

µLi,j

− W

µLj,D

<
W

µLi,D

,

2

Li,j

<
1

Li,D

+
1

Lj,D

,

2Li,DLj,D

Lj,D + Li,D

< Li,j.

(4.19)

Combining (4.19) and the condition Lj,D(2− ρi,j) < Li,j, we get

ρi,j >
2Lj,D

Li,D + Lj,D

, (4.20)

which completes the proof of (4.17) and hence the proof.

Using Proposition 4.4.2, we have the following corollary:

Corollary 4.4.3. In the case when there is no correlation among nodes, i.e. ρi,j = 0,

state Sdirect is a NE point when Li,j < 2Lj,D, ∀ Yi, Yj ∈ Ns and Yi ̸= Yj.

4.5 Simulation Results

In this section, we present the numerical results and draw some observations on the

comparative performance of our proposed routing algorithms with the other classical

approaches. Namely, we compare the performance of T-CAR and T-ICAR with

other algorithms like IAR, MER, DIRECT and optimal routing solution (OPT). The

impact of network size and correlation coefficient, the size of cell radius and number of
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iterations required to converge for different algorithms are compared. In accordance

with design parameter, the performance of our proposed algorithms are compared in

terms of energy and throughput with other classical algorithms.

4.51 Simulation Setup

The number of sensor nodes in the network is varied between N = 4 to N = 40,

which is uniformly distributed over a square area of dimension 100m × 100m. We

randomly deploy each node in the network such that the distance between each node

in the network is larger than 3m. The ratio of all nodes to source nodes is selected

to be φ = α/N = 1 (i.e. all nodes are sources) or φ = α/N = 0.5 (i.e. the

number of relay nodes and sensor nodes are same). We adopt Gaussian random field

data correlation model that is frequently encountered in practice [29]. In this model,

correlation coefficient ρi,j between nodes Yi and Yj decreases exponentially with the

distance between nodes di,j, for instance, we use ρi,j = exp(−d2i,j/c) which corresponds

to a singular continuous-space process [29] and c is the correlation constant. In

simulations, we use a “forgetting” factor of 0.8 per link, that is, if data is aggregated

at a node Yi, then the correlation ρi,j between that node and its parent node Yj in

the routing tree is reduced to 0.8 of its original value. The noise power is σ2 = 10−13

Watts, which corresponds to thermal noise power for a bandwidth of W = 1 Mhz.

We choose the equal transmit powers of all nodes to be 110 dB above the noise

floor (Pi = 10−2 Watts, ∀i ∈ N ). The target SINR is selected to be γ∗ = 5 (7

dB). We assume that each packet contains 80 bits of information and no overhead

(i.e., m = M = 80). Each symbol is represented with µ = 1 bit of information,

i.e. Θ(Yi) = 1 bits/symbol. We use Dr = 16m for our simulations to evaluate the

performance of IAR and T-ICAR. The results are simulated and averaged over 1000

different network configurations for each routing algorithm.
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MER and IAR algorithms are used as a performance benchmark to compare

with our proposed algorithms and to measure the trade-off involved in energy and

throughput. Both MER and IAR algorithms use Dijkstra’s algorithm [18] to find the

best routes from sink to source nodes. Although MER and IAR were not proposed in

the context of data aggregation, we set-up the paths according to their corresponding

utility functions, and then aggregate data opportunistically based on the routes set-

up, this approach is called routing-driven aggregation [27]. T-CAR and T-ICAR are

implemented iteratively based on the best response strategy described in the previous

sections. Note also that, we start T-ICAR algorithm with IAR and T-CAR algorithm

with DIRECT when φ = 1 and with MER algorithm when φ = 0.5.

Through multiple iterations, the algorithms change the initial routing tree

significantly. Fig. 4.2 demonstrates the branches of the constructed trees for different

routing strategies discussed previously, namely for MER, IAR, T-CAR and T-ICAR

under the same network topology for N = 24, c = 100 and φ = 0.5. Thick lines

indicate the regions where the data aggregations are performed. The sensor nodes

that are distant from the sink has lower data rates and therefore, have thinner lines.

The results show that different routing metrics with different utility functions lead to

paths with significantly different trees or network connectivity. For example, T-CAR

tends to discover paths with higher throughput while exploiting the data correlation

whereas MER searches for minimum energy routing paths.

4.52 Symbol Throughput Improvements

In this section, we study the impact of network size on the performances of the above

algorithms. Fig. 4.3 shows the total throughput and energy of T-CAR, DIRECT and

MER algorithms versus number of nodes for c = 1000 when φ = 1. We see that

the throughput of T-CAR increases with network size at the expense of energy loss
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Figure 4.2: Selected paths of each source and the tree structures of different routing
strategies for N = 24, c = 100 and φ = 0.5. (a) MER. (b) IAR. (c) TCAR (d)
TICAR.

due to the trade-off between energy and throughput gains. This can be explained as

follows: the network topology changes from sparse to dense when the network size

increases. The data correlation between neighboring nodes becomes higher as the dis-

tance between nodes decreases, therefore more redundant data can be reduced with

data aggregation. The increased number of nodes has mainly two affects on the net-

work throughput of both T-CAR and MER algorithms: First, it increases the number

of simultaneous transmissions which also increases the interference in the network.

As a result, the bottleneck throughput of each node decreases. Second, increasing

number of nodes clearly increases the total network throughput by increasing the data
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correlation between nodes. The data correlation and interference have reverse effects

on network throughput. Note also that MER algorithm is optimized for energy, not

for throughput. However, as the network size N increases, the throughput of MER

algorithm increases too. This result indicates that MER algorithm benefits more from

data correlation than network interference as the number of nodes increase.

The percentage throughput improvements of T-CAR with respect to initial

starting tree of DIRECT increases with network size. In large network sizes, T-CAR

has more potential and opportunity to give higher throughput improvements since

DIRECT doesn’t exploit data correlation. Hence, the percentage gain of throughput

is higher. We also observe that T-CAR has also significant throughput improvements

over MER. As an example, for N = 10, the throughput improvements of T-CAR

over DIRECT and MER are approximately 16 and 72 percent respectively. On the

other hand, for N = 40, the corresponding throughput improvements are 54 and 70

percent over DIRECT and MER respectively. Fig. 4.3 also shows the total energy

expenditures of the above algorithms. Compared to MER algorithm, due to the

trade-off between energy and throughput, the energy loss of T-CAR is on the order

of 81 and 55 percent for N = 10 and N = 40 respectively.

Numerical studies also show important total throughput improvements of T-

ICAR algorithm over T-CAR, IAR, and MER algorithms at the expense of energy loss

as shown in Fig. 4.4 for N = 24, φ = 0.5, Dr = 16m and c = 100. In terms of total

throughput, T-ICAR and T-CAR outperform IAR and MER, because their utility

functions are designed for throughput maximization by exploiting data correlation.

The total throughput improvement of T-ICAR is on the order of 4.36 percent over T-

CAR, 70 percent over IAR and 84 percent over MER. On the other hand, the energy

loss of T-ICAR is on the order of 97.06 percent over IAR and 97.32 percent over MER.

Note also that T-CAR and T-ICAR have approximately same energy consumptions.
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Figure 4.3: Total throughput and energy versus number of nodes, N , for c = 1000
and φ = 1. (a) Total throughput. (b) Total energy.

From Fig. 4.4, we also see that T-CAR performs 62.91 percent better than IAR

at this moderate interference environment. However, it has been shown in [28], that

the gains of IAR can also diminish for very low or very high interference environments
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Figure 4.4: Total throughput and energy of MER, IAR, CAR and ICAR throughout
the iteration process for N = 24, φ = 0.5, c = 100 and Dr = 16m. (a) Total
throughput. (b) Total energy.

which can increase the performance gap even more. IAR is designed to eliminate “hot

spots” in the network and reduce interference. There exists a energy-throughput
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trade-off involved in selecting the IAR algorithm compared to MER algorithm. IAR

algorithm is known to outperform the MER algorithm in terms of throughput at

the expense of slight increase in the average energy per bit transmission for wireless

ad-hoc networks [28]. In WSNs, the throughput gain when cell radius Dr = 16m

is 8.23 percent, whereas there is an 9.09 percent increase in energy expenditures at

the same time as can be observed from Fig. 4.4. Therefore, IAR algorithm is a

better algorithm than MER in terms of throughput by avoiding hot-spot areas and

controlling the interference in the network.

4.53 Impact of Correlation Coefficient

Fig. 4.5 shows the total throughput for T-CAR and MER algorithms as the corre-

lation constant c increases from 0 to 1000 for different network sizes. Intuitively,

the throughput obtained for both algorithms at higher correlation is much higher

compared with the throughput obtained at low correlation levels.
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Figure 4.5: Total throughput versus correlation constant (c) for φ = 1.
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T-CAR algorithm gives significant throughput improvements for all network

size and under all the correlation constants compared to MER algorithm. The per-

centage improvements of T-CAR compared to MER decrease with increasing correla-

tion constant. The reason is that at low correlation levels, T-CAR has more potential

and opportunity to give higher throughput improvements. Hence, the percentage im-

provement for throughput is higher. As the correlation constant increases, the room

for further improvement of T-CAR algorithm is not so high as before, hence percent-

age improvements are lower. For example, for correlation constant of c = 200, the

percentage throughput improvements of T-CAR over MER are 56.38 and 51.30 for

network sizes of N = 20 and N = 10 respectively, whereas, for correlation constant

of c = 800, the percentage improvements are 46.52 and 43.24 for N = 20 and N = 10

respectively. Note also that at low correlations, the throughput of T-CAR is lower at

high network size N = 20 compared with low network size N = 10. This is due the

fact that at higher network sizes and low correlation, the interference in the network

diminishes the total throughput in the network. This shows that interference impact

is dominant at low correlations and hence reduces the total throughput. However, as

the correlation constant increases, the correlation impact dominates the interference

impact resulting in higher total network throughput.

The results in Fig. 4.5 implies that T-CAR algorithm can achieve significant

throughput gains compared to MER algorithm for a wide range of data correlation

by utilizing only local information. Finally, similar conclusions may also be drawn

for T-ICAR algorithms’ throughput as the correlation coefficient changes.

4.54 Convergence of the Algorithm

In addition to the effectiveness of T-CAR, the number of iterations for the convergence

of the distributed algorithms is also important. In this section, we show the number of
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Figure 4.6: Normalized throughput of T-CAR with respect to MER versus number
of iterations for φ = 1 and c = 1000.

required iterations for the convergence of the T-CAR algorithm for different network

sizes. Fig. 4.6 shows the normalized throughput of T-CAR compared to DIRECT

versus number of iterations for φ = 1 and c = 1000. The percentage improvements in

terms of throughput of the T-CAR algorithm converge in κ = 5, 9, 14 and 15 iterations

for network sizes of N = 10, 20, 30 and 40 respectively. Fig. 4.6 indicates that T-CAR

algorithm is able to achieve convergence to NE. Moreover, T-CAR algorithm involves

small number of iterations, and it can be implemented efficiently in a distributed

fashion. The convergence speed of the algorithm is associated with the network size

N since longer convergence iteration is needed when N is large. Similar convergence

results may also be shown for T-ICAR algorithms after IAR is established.
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4.55 Comparisons with Optimal Routing Solution

Constructing and optimal routing tree to minimize a total cost function in a WSN is

an NP hard problem [3]. Therefore, we can only solve the problem for a small topology

in a reasonable time. Note that optimal routing solution can provide a measure how

good the proposed routing algorithms really are. Consider a small wireless sensor

network with N = 4 for φ = 1 and c = 1000. As a performance benchmark, the global

optimum routing solution is obtained by considering all possible feasible strategies

with a single sink, which is 125 different set of states or data-gathering trees of G.

Table 4.1 shows the energy per symbol and symbol throughput of MER, DI-

RECT, T-CAR and OPT algorithms. Note that the global optimum routing solution,

indicated by OPT, functions as the upper bound of the overall throughput. We ob-

serve that T-CAR algorithm’s performance is within 97 percent of the total through-

put of OPT while the MER algorithm’s performance is within 76 percent of OPT.

Moreover, in our experiments, T-CAR algorithm converges in 4 iterations. Note that

the performance improvement of T-CAR is highly affected by the selection of the

initial starting tree. If the starting tree is selected based on the performance metric

it is designed for, proposed correlated-aware algorithms tend to give closer perfor-

mance results to OPT. Note also the trade-off involved in energy and throughput for

T-CAR algorithm and OPT. The energy loss is 82 percent for T-CAR algorithm and

80 percent for OPT algorithm compared to MER algorithm.

Table 4.1: Comparisons with centralized optimization at the end of iterations for
N = 4, c = 1000 and φ = 1

OPT T-CAR MER DIRECT
Throughput (kbps) 311.6 303.26 236.47 280.03
Energy (mJ/bits) 3.0 3.4 0.6 5.3
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4.6 Conclusions

In this chapter, we have presented a detailed investigation of efficient throughput max-

imizing transmission structure in wireless sensor networks where each source transmits

and aggregates the correlated data over intermediates source nodes to the sink. We

have considered the impact of interference, as well as efficient data aggregation in es-

tablishing routing paths towards the sink for throughput maximization problem. For

correlation aware routing, we have proposed a distributed iterative protocol based

on a game theoretic framework, which is shown to converge within a couple of iter-

ations. We have also shown that, by accounting for both correlation structure and

interference impact in constructing routes, significant throughput gains over classic

approaches can be achieved. Due to the NP-completeness of the optimum routing

solution, the performance of the proposed algorithms is compared for a small net-

work size and is shown to be within 97% of the optimal throughput when the initial

starting tree is within 76% of the optimal throughput solution.

Appendix 4.A: Proof of Theorem 4.4.1

Suppose there exists a potential function of the congestion game Γ:

P(Si, S−i) = −
Υ∑
i=1

wBi
(λBi

(S)) =
∑
f∈F

λf (S), (4.21)

where f is the facility, F is the set of all facilities as defined in Section 4.32 and

λf (S) = λBi
(S) for f ∈ Bi. Let Si ∈ S be the strategy of source Yi, i = 1, ..., α,

i.e. the collection of nodes used for relaying or aggregating using the branch Bi

and S ′
i ∈ S’ be another strategy for source Yi using the branch B′

i where S’ =

(S1, ..., Si−1, S
′
i, Si+1, ..., Sα). Note that Bi = B′

i if strategies Si and S ′
i are using the
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set of nodes in the same branch. Then,

P(Si, S−i) =
∑
f∈F

λf (S),

=
∑
f∈Bi

λf (S) +
∑
f∈B′

i

λ−i
f (S)−

∑
f∈B∗

λf (S) +
∑

f∈F\{Bi
∪

B′
i}

λf (S),
(4.22)

where B∗ denotes the common facilities used by the strategies Si and S ′
i, i.e. B∗ =

Si

∩
S ′
i. Define,

Q(B−i,−i′) = −
∑
f∈B∗

λf (S) +
∑

f∈F\{Bi
∪

B′
i}

λf (S). (4.23)

Then,

P(Si, S−i) =
∑
f∈Bi

λf (S) +
∑
f∈B′

i

λ−i
f (S) +Q(B−i,−i′). (4.24)

If source Yi changes its strategy from Si to S ′
i, then the potential function becomes,

P(S ′
i, S−i) =

∑
f∈Bi

λ−i
f (S′) +

∑
f∈B′

i

λf (S
′) +Q(B−i,−i′). (4.25)

Note that Q(B−i,−i′) is not affected by the strategy changing of source Yi. Therefore,

P(S ′
i, S−i)− P(Si, S−i) =

∑
f∈Bi

λ−i
f (S′) +

∑
f∈B′

i

λf (S
′)

−

∑
f∈Bi

λf (S) +
∑
f∈B′

i

λ−i
f (S)

 .

(4.26)

Note that the utility function in (4.13) can be rewritten as:

ui(Si, S−i) =
∑
f∈Bi

λf (S)−
∑
f∈Bi

λ−i
f (S). (4.27)
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From above,

ui(S
′
i, S−i)− ui(Si, S−i) =

∑
f∈B′

i

λf (S
′)−

∑
f∈B′

i

λ−i
f (S′)

−

(∑
f∈Bi

λf (S)−
∑
f∈Bi

λ−i
f (S)

)
.

Hence,

ui(S
′
i, S−i)− ui(Si, S−i) = P(S ′

i, S−i)− P(Si, S−i). (4.28)

Then, P(Si, S−i) defined in (4.14) is an EPG of game Γ.
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Chapter 5

Joint Iterative Beamforming and Power Adaptation for Wireless Ad-Hoc

Networks

5.1 Introduction

Using multiple-input multiple-output (MIMO) techniques in wireless communications

has always attracted an increasing interest. The use of multiple antennas boosts up

the capacity and the spectral efficiency of communication systems [35] [36]. Factors

such as large number of simultaneous transmissions and reduced cell-sizes necessi-

tates the interference management for wireless MIMO systems [37]. More efficient

interference management and higher performance results can be achieved by exploit-

ing adaptation capability in wireless MIMO systems. System adaptability can be

achieved by allowing transmitters and receivers to adapt their transmitter parame-

ters (e.g. powers, beamformers, frequency, modulation, rate etc.) or receive filters

according to communication environment over time. Rather than using fixed system

parameters with complex transmitter and receiver designs, the adaptation capabil-

ity of the wireless system can increase the system efficiency with less computation

complexities.

Transmit beamforming has been the focus of extensive research in the liter-

ature [38] [39] [40] [41] [42] [43] [44] [45] and designing optimum signaling at the

transmitter has shown important improvements for systems operating in varying in-

terference environments [19] [38] [40] [46] [47] [48] [49]. In spatial transmit beamform-

ing, each communicating node’s symbol stream is multiplied by a preselected transmit

beamforming weight vector for transmission through multiple antennas such that the
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overall interference due to other multiple nodes is minimized. Optimization of the

signal and beamforming done at the transmitter improves the efficiency by steering

the beam towards the intended receiver while placing nulls toward the unintended

receivers in order to avoid causing excessive interference to them. The transmitters

may adapt their signals through a low rate feedback channel, based on the received

system information from the receiver [50]. Power control mechanism can also be

combined with limited rate feedback from the receiver in order to satisfy certain

Quality-of-Service (QoS) requirements at the receiver [51] [52] [53].

In general, MIMO beamforming techniques in communication systems are ad-

dressed in three different systems: point-to-point, cellular, and ad hoc networks. The

great potential of MIMO in point-to-point communication is shown in [35] [38] [40] [54]

and designing linear precoders (eigencoders) and beamformers are well studied for

point-to-point MIMO links [39] [41]. In cellular networks, beamforming algorithms

are designed as a means to minimize the total power or to enhance the capacity using

MIMO techniques for array-equipped base station and single antenna mobile trans-

mitters [42] [43] [44] [45]. In ad hoc networks, without a central controller, distributed

beamforming techniques are used to overcome lower system throughput and higher

energy consumption [46] [55] [56] [57]. The optimization solutions designed in ad-hoc

networks need careful study, because the environment is interference limited and the

performance of MIMO techniques depends significantly on the overheads introduced

by the proposed algorithms.

Distributed spatial beamforming algorithms are proposed for multi-user ad-hoc

MIMO networks under channel reciprocity conditions in [56] [57]. Channel reciprocity

holds when the channel matrix in both directions of a MIMO link are matrix transpose

of each other which is usually assumed in time-division duplex (TDD) systems [57].

Bromberg et al. [57] consider the capacity maximization problem and proposes a
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locally enabled global optimization (LEGO) algorithm for distributed beamforming

update under Gaussian other-user interference. Iltis et al. [56] formulate the prob-

lem as a noncooperative game for overall power minimization of the network under a

constant QoS constraint (target signal-to-interference plus noise ratio (SINR)). The

proposed iterative minimum mean-square error (IMMSE) algorithm solves an op-

timization problem by computing transmit/receive beamformer pairs and transmit

powers in a distributed manner [56]. In IMMSE algorithm, the receive beamformer

is enforced to be equal to the conjugate of the transmit beamformer and the al-

gorithm relies on the channel reciprocity condition. Hence, the IMMSE algorithm

does not demand explicit feedback schemes for channel state information (CSI) at

the transmitters. However, during the updating procedure of the IMMSE algorithm,

transmitting overheads of training sequences and power control commands are in-

curred. The amount of overheads increases with iterations, since the algorithm per-

forms transmit/receive beamformer and power updates iteratively. Moreover, if the

transmitter and receiver are communicating by using different channels or frequencies

for its transmission and reception, i.e. when the channel reciprocity is not valid, CSI

is required to feedback to the transmitter, which sometimes needs high overhead.

In order to lower communication overhead between transmitter and receiver

and for conditions in which channel reciprocity does not hold, quantized transmit

beamforming codebook design using limited feedback beamforming scheme for single

user MIMO systems is proposed in [54]. The concept is based on selecting a codeword

in a predetermined codebook that is known to both transmitter and receiver. The

transmit beamformer selection from a predefined codebook can reduce the latency in

highly mobile and unstable communication networks. Moreover, when the commu-

nication system needs low rate or has bandwidth constraints, feedback overhead in

situations like non-reciprocal channels are substantially reduced using the proposed
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codebook design approach. In this scenario, the receiver only feeds back the index

of the selected transmit beamformer to the transmitter. In the case when there is

no channel reciprocity between transmitters and receivers, an iterative limited feed-

back beamforming algorithm is proposed in [58]. The algorithm is studied for rate

maximization problem in MIMO multi-user ad-hoc networks using sequential discrete

transmit beamformer selection update algorithm. The algorithm performs iterative

best response strategy which is the maximization of the received SINR by each node

at each iteration. However, the convergence analysis of the proposed algorithm is not

followed.

Using game theory has given useful solutions for efficiency and convergence

proofs of some of the important problems in wireless communications such as dis-

tributed power control algorithm design [59], joint code-division multiple access (CDMA)

waveform and power control design [52] [53] [60] and optimum transmission signaling

strategies [61] [62]. On the other hand, application of game theory for distributed

beamforming update is problematic [56] which will also be noted in this chapter. La-

catus et al. [53] and Popescu et al. [52] study joint CDMA codeword (or sequence)

and power adaptation using noncooperative game model. The problem is formu-

lated as a separable game using noncooperative convex games, with corresponding

sub-games: power control and codeword control game. However, in contrast to our

joint optimization problem, the joint optimization of powers and CDMA codewords

is investigated only over convex games (i.e. the set of action space is non-empty,

compact and convex [12] [59]), and therefore the decision variables (i.e. the powers

and codeword sequences) are continuous, not discrete in these games.

Optimum transmit signaling for MIMO interference systems for rate maximiza-

tion problem using game theory has been studied in [19] [46] [47] [48] [49]. In these

papers, the system is modeled as noncooperative game where every MIMO link is a
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player and computes against the others by choosing the transmit covariance matrix as

the transmission strategy to maximize their own rate as the utility function. In [47],

rate maximization for MIMO ad-hoc networks is performed by power control and the

existence of Nash equilibrium (NE) solution is shown using the concave game anal-

ysis. However, the convergence analysis of the proposed algorithms is not followed.

In [19] [46] [48] [49] [61] [62], the decision parameters are selected as the covariance

matrices of the transmitted signal vector. Arslan et al. [48], show that individual

mutual information maximization game is a concave game [63] in MIMO interference

channels, which implies the existence of a NE for arbitrary channel matrices. The

uniqueness of the equilibrium is proved when the multi-user interference (MUI) is al-

most negligible or sufficiently small. Decentralized algorithms using local information

are proposed as update strategies to determine the link parameters. As an extension

of their work and for more general conditions, the uniqueness of the NE solution is

provided in [19]. Scutari et al. [19] provide a unified framework for the noncooperative

mutual information maximization problem for MIMO interference systems. A unified

set of sufficient conditions guaranteeing the uniqueness of the NE and the convergence

of asynchronous water-filling algorithm is provided for square non-singular channel

matrices. The analysis is based on interpretation of MIMO waterfilling operator as

a matrix projection onto the convex and closed set of covariance matrices. In [49],

same authors extend their results for arbitrary channel matrices. However, in these

papers the selection of discrete optimized signaling has not been exclusively investi-

gated. The existence (or uniqueness) of the NE solution that is proved in [47] [48] is

valid either for convex or concave games or for positive definite covariance matrices

that are well defined as a convex and closed set [19] [49]. On the other hand, coop-

erative and noncooperative algorithms for joint channel and power allocation chosen

from a “discrete” strategy space are studied in [64] in the context of wireless mesh
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networks. However, the proposed noncooperative algorithm is suboptimum and one

of the adaptation parameters (i.e. channel adaptation) is not followed after the first

iteration.

In MIMO ad-hoc networks in MUI environments, the transmission scheme of

each user also depends on that of other users, since the interferences at each user

depends on the transmission parameters of the other users. The decision of each user

also reshapes the interference emitted to other links. Therefore, power minimization

problem using distributed algorithms with transmit beamformer selection game is

challenging especially in ad-hoc networks. Unlike power control games, the questions

of optimal power minimization algorithms are difficult to address for the beamforming

games, due to the lack of a natural ordering of the actions [56]. For example, the

transmit beamformer and power of one node pair affects the SINR of other node

pairs, and vice versa. Moreover, if the node pairs belong to different regulation

entities, the non-cooperative node pairs may only want to minimize their own transmit

power rather than the overall one. Therefore, finding the optimal distributed transmit

beamformer solution for the power minimization problem is not straightforward.

The analysis for the selection of actions from the discrete set and convergence

analysis is still missing for joint transmit beamforming and power adaptation in the

literature. To the best of authors’ knowledge, the problem of joint discrete transmit

beamforming and power adaptation has not been formalized in multi-user MIMO ad-

hoc networks. In this chapter, we study a decentralized approach for optimizing the

transmit beamformer and power levels using local information and reasonable compu-

tational burden. We consider the total power minimization under constant received

target SINR constraint. Our contributions in this chapter are twofold: First, we study

an efficient cooperative beamforming algorithm for global power minimization prob-

lem with convergence analysis. Note that when performing cooperative algorithm, the
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amount of information to be exchanged between nodes will grow with the number of

iterations. Second, we study a noncooperative regret-matching learning algorithm for

joint transmit beamformer and power update for the total network power minimiza-

tion. The noncooperative update solution reduces the amount of overhead by using

only local information. We compare the performance of proposed algorithms with

the optimal global solution which is found by searching all feasible strategy space.

5.2 System Model and Concepts

In this chapter, we consider a wireless ad hoc network shown in Fig. 5.1. The ad hoc

network consists of multiple transmit and receive antenna node pairs. All nodes are

assumed to be using same channel. The interference comes from the other node pairs

which operate simultaneously on the same channels. In this ad hoc network model,

there are N node pairs and each node pairm ∈ {1, 2, ..., N} consists of one transmitter

node and one receiver node. Each transmitter and receiver node is equipped with T

antennas. The complex symbol stream transmitted is bm ∈ C with E{|bm|2} = 1.

Each node has a unit-norm receive/transmit beamformer pair (wm, tm) withwm, tm ∈

CT .

The received signal vector rm ∈ CT at the m−th receiving node is given by

rm =
√

PmHm,mtmbm +
∑
i̸=m

√
PiHm,itibi + nm, (5.1)

where Hm,i denotes T ×T MIMO channel between the i’th transmitting node and the

m−th receiving node and is quasi-static and Pm is the power of them−th transmitting

node. The additive white Gaussian noise terms nm ∈ CT have identical covariance

matrices σ2IT where σ2 is the noise power and IT is the T × T identity matrix. Note

that the first term of the right-hand side of (5.1) is the desired signal, whereas the
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Figure 5.1: Multi-user power control and limited feedback transmit beamforming
scheme for MIMO ad-hoc networks. (tk)m represents the m’th row of the k’th user’s
transmitter vector tk.

second term is the interference from the other transmitting nodes.

As we are interested in the minimum achievable power, we consider the worst

case where all node pairs always have some packets to transfer and all nodes in the

network can transmit simultaneously. The network is assumed to be synchronous

The set of available codebook beamformers for the m−th transmitting and receiving

node pair is denoted by ∆m = {t1m, t2m, ..., tΥm} with cardinality Υ. In a limited feed-

back beamforming system, the receiving node selects a transmit beamformer among
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the codebook feeds back the index of the selected beamformer. Each node can se-

lect between Υ transmit beamformer vectors. We assume that there is only one

way communication link for all m−th node pairs. Let tm ∈ ∆m be the selected

transmit beamformer for the m−th transmitting and receiving node pair. Denote

Θ = [t1, t2, ..., tN ]
T and P = [P1, P2, ..., PN ]

T as the transmit beamformer selection

and transmission power vectors for N nodes respectively. The T × T the interference

plus noise covariance matrix at m−th receiving node is

Rm(Θ−m,P−m) =
∑
i̸=m

PiHm,itit
H
i H

H
m,i + σ2I, (5.2)

where Θ−m and P−m are the transmit beamfomers and powers of nodes other than

m.

An antenna beam pattern that adjusts the antenna gains to form nulls towards

the direction of the interferers while keeping a constant gain towards the directions of

the multi-path of the intended receiver can be designed using receive antenna arrays.

The minimum variance distortionless response beamformer [56] [65] can adjust the

array weights properly such that the sum of interference and noise is minimized. The

normalized receive beamformer at m−th receiving node is

wm =
ŵm

||ŵm||
, (5.3)

where ŵm = R−1
m Hm,mtm. The resulting received SINR at the m−th receiving node

due to desired transmitter of m−th node pair is

Γm =
Pm|wH

mHm,mtm|2∑
i̸=m Pi|wH

mHm,iti|2 + σ2
, (5.4)

where ||wm||2 = ||tm||2 = 1 for all m.
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The proposed distributed algorithms attempt to achieve a target SINR by ad-

justing transmit powers. To construct a distributed iterative limited feedback beam-

forming scheme, let us first consider the case when there is only one node pair in the

wireless network. The receiver selects the transmit beamformer from the codebook

∆1 as

t∗1 = arg max
t1∈∆1

Γ1, (5.5)

where t∗1 is the optimal transmit beamformer selection for one node pair. Then, the

receiver returns the index of the beamformer for transmit beamformer selection t∗1

and the received “normalized” SINR, (t∗1)
HHH

1,1R
−1
1 H1,1t

∗
1, through low-rate feedback

channel. The transmitter selects the transmitter beamformer in order to minimize its

own transmission power P1, where P1 is updated as

P1 =
γ0

(t∗1)
HHH

1,1R
−1
1 H1,1t∗1

, (5.6)

where γ0 is the target SINR value.

Consider now the case whereN node pairs coexist in the wireless network. Note

that for each node pair m, the value of received SINR, i.e. Γm is a function of (Θ,P).

Therefore, the transmit power of one node pair depends not only on the transmit

beamformer selection of itself, but also those of other node pairs’ transmit power and

transmit beamformer selections in the network. Furthermore, in beamforming, if user

i ̸= m changes its transmit beamformer ti to increase its own SINR Γi, it can either

increase or decrease Γm, the SINR of link m, depending on the relative positions of

the nodes. Therefore, designing an optimal distributed algorithm which converges to

a set of beamformers to minimize the overall transmit power while meeting target
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SINRs for all node pairs is not a straightforward task.

5.3 Optimization Problem and Game Theoretical Interpretation

The goal is to minimize the transmit power of all nodes m ∈ {1, 2, ..., N} under

constant target SINR γ0. The optimization problem can be defined as,

Minimize
Θ,P

N∑
m=1

Pm,

subject to Γm ≥ γ0, ||wm|| = ||tm|| = 1,

Pmin < Pm ≤ Pmax, m ∈ {1, 2, ..., N},

(5.7)

where Pmin and Pmax are the minimum and maximum transmit powers, respectively.

We consider the above problem as a normal form game, which can be mathematically

defined by the triplet
∏

= ⟨N , C, {um}Nm=1⟩ where
∏

is a game, N = {1, 2, ...., N}

is the finite set of players of the game, C = C1 × C2×, ..., CN represents the set of

all available actions for all the players and {um}Nm=1 : C → R is the set of utility

functions that the players associate with their strategies. Actions cm ∈ Cm for a

player m are the transmit powers Pm ∈ [Pmin, Pmax] and the transmit beamformer

selections tm ∈ ∆m.

Players select actions to maximize their utility functions. We want to determine

if there exists a convergence point (i.e. a Nash equilibrium (NE)) from which no player

would deviate anymore for analyzing the outcome of the game see Section 2.21 for the

definition of NE. One of the questions that arise is whether the beamforming selections

Θ = [t1, ..., tm, ..., tN ]
T and eventually power allocations P = [P1, P2, ..., PN ]

T will

converge to NE solution. In the following section, we will discuss the scenarios where

the node pairs are cooperative or non-cooperative in order to search for best results
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and convergence guarantees.

5.31 System Feasibility Region

In order to ensure that every user should have SINR no less than the required target

SINR γ0, i.e. Γm ≥ γ0, m ∈ {1, 2, ..., N}, we will define a system feasibility region

Ω. We rewrite the SINR in (5.4) as

Γm =
PmGmm∑

i ̸=m PiGmi + σ2
, (5.8)

where Gmm = |wH
mHm,mtm|2 and Gmi = |wH

mHm,iti|2. The inequality Γm ≥ γ0, m ∈

{1, 2, ..., N} can be written in matrix form as,

(I−DG)P ≥ v, (5.9)

where I is a N × N identity matrix, v = [v1, v2, ..., vN ]
T with vm = σ2γ0/Gmm,

D = diag{γ0, ..., γ0} is a N ×N matrix and

[Gmi] =

 0 if i = m,

Gmi/Gmm if i ̸= m.

By Perron-Frobenius Theorem [66], there exists a positive power allocation to achieve

the desired targeted SINRs if and only if the maximum eigenvalue of DG, i.e. spec-

trum radius ρ(DG) is inside the unit circle [67]. When |ρ(DG)| < 1, the optimal

power solution is

P =

 (I−DG)−1v if |ρDG| < 1,

+∞ otherwise.
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Note that the system feasibility region Ω is the supporting domain where there exist

positive power vector solutions. The above condition for optimality is a necessary

condition for existence of feasible region Ω. In this chapter, we assume that we are

in the system feasibility region for all Θ ∈ ΥN

5.4 Cooperative and Noncooperative Beamforming for MIMO ad-hoc

networks

5.41 Optimal (Centralized) Solution

In a wireless ad hoc network, the centralized agent can select the transmit beamform-

ers and the corresponding transmit powers to minimize the total transmit power of

all transmitting antennas as,

(Θ∗,P∗) = argmin
Θ,P

N∑
m=1

Pm(Θ,P−m), (5.10)

where Θ∗ = [t∗1, t
∗
2, ..., t

∗
N ]

T and P∗ = [P ∗
1 , P

∗
2 , ..., P

∗
N ]

T are the optimal transmit beam-

former and power solutions respectively. The transmit power Pm of m−th node pair

is defined as

Pm(Θ,P−m) =
γ0

tHmH
H
m,mR

−1
m Hm,mtm

, (5.11)

where Rm is a function of (Θ−m,P−m) as shown in (5.2). A naive approach to solve

the problem is to investigate all strategy profiles Θ = (t1, ..., tm, ...., tN)
T exhaustively

(Note that for a given fixed strategy profile Θ, the corresponding power profile P can

be computed using (5.11) for each individual node pairm). In order to compute (5.10),

the centralized agent evaluates the total network power for ΥN possible beamforming

vector combinations. For example, for a network size with 10 node pairs where each

user has to select from a codebook of size Υ = 16 beamformers, the search space is
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1610 strategy profiles. Obviously, finding the centralized transmit beamformer is cum-

bersome in large-scale wireless ad-hoc network. Next, we will introduce decentralized

power minimization algorithms using cooperative and noncooperative techniques.

5.42 Cooperative Power Minimization using Beamforming

In this section, we consider the scenarios where all node pairs in wireless network

are cooperative. In a cooperative game, nodes in the network are able to coordinate

and select the transmit beamformer accordingly. We want to find the transmit beam-

former and power assignments such that the overall power in the whole network is

minimized. The objective function can be written as

unetwork(Θ,P) = −
N∑

m=1

Pm(Θ,P−m). (5.12)

We assume that each user’s utility function is (5.12). That is,

ui(Θ,P) = unetwork(Θ,P) = −
N∑

m=1

Pm(Θ,P−m), ∀i ∈ N . (5.13)

In other words, we model the game as identical interest game which is a special case

of potential games [14] [68] as described in Section 2.31. It is easy to verify that all

identical interest games have at least one pure NE, namely any action profile that

maximizes unetwork(Θ,P) [48] [64]. We analyze a cooperative power minimization

algorithm (COPMA) which can converge to the optimal NE with arbitrarily high

probability. This method is analogous to the decentralized negotiation method called

adaptive play [48]. The key characteristic of COPMA is the randomness deliberately

introduced into the decision making process to avoid reaching a local solution. In

COPMA, the choices of players (in our case transmit beamformer selections) lead the
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system to the optimal NE solution with arbitrarily high probability [48].

Inspired by [64], a decentralized implementation of COPMA can be done as fol-

lows: Assume that each node pairm in the network has an unique IDm and maintains

two variables P current
m and P updated

m which are the m−th node pairs transmit power in

the network previously and after the random change of transmit beamformer, respec-

tively. The node pairs can be chosen randomly or in a round-robin order for updating

of the transmit beamformers. Whenever a node pair changes its strategy or transmit

beamformer, it broadcasts a vector {IDm, P
current
m , P updated

m } via a backbone network.

After that, all the other node pairs i ∈ N\m will set P current
i = P updated

i , recalculate

P updated
i as the new transmit power and will send the vector {IDi, P

current
i , P updated

i }

to the updating node pair m. Finally, m−th node pair will decide whether the new

transmit beamformer should be kept or not with some probability which depends on

Pcurrent and Pupdated which are the total transmit power in the network previously and

after the random change of transmit beamformer respectively. The detailed descrip-

tion of COPMA is provided as follows:

Initialization: For each transmitting and receiving pair m, the initial index

of transmit beamformer is selected as one and the initial transmit powers are set as

Pm = Pmax, ∀m ∈ N .

Repeat: Randomly choose a node pairm as the updating one with probability

1/N . Denote tm(n) ∈ ∆m as the current transmit beamformer of m−th node pair in

iteration n.

1. Set tm(n) = tm(n− 1), ∀m ∈ N . Calculate P current
m as in (5.11) ∀m ∈ N .

2. To update node pair m, randomly choose a transmit beamformer, tupdatedm ∈ ∆m

and calculate P updated
m as in (5.11). Then, broadcast a data vector {IDm, P

current
m ,

P updated
m } to all other node pairs i ∈ N\m.
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3. After receiving the data vector, for each i,

• If Pi changes (due to change in interference perceived at the i−th receiver),

every other node pair i ∈ N\m sets P current
i = P updated

i and calculates its

new transmit power from (5.11) and sets it to P updated
i .

• If Pi does not change, P
current
i and P updated

i remain unchanged.

After P current
i and P updated

i are updated for every other node pairs i ∈ N\m in

the network, send back the vector {IDi, P
current
i , P updated

i } to node pair m.

4. Node pair m computes the total current total network power as Pcurrent =∑N
m=1 P

current
m and total updated network power as Pupdated =

∑N
m=1 P

updated
m

with tupdatedm based on the received power values from all other node pairs i ∈

N\m.

5. For a smoothing factor τ > 0, tm(n) = tupdatedm for the m−th node pair with

probability

1

1 + exp ((Pupdated − Pcurrent)/τ)
, (5.14)

i.e. the updating node pair m selects tupdatedm with probability (5.14).

6. The m−th node pair broadcasts a notifying signal that contains the decision

about whether the new transmit beamformer is kept. If not kept, every other

node pair i ∈ N\m keeps P updated
i = P current

i

Until : Predefined number of iteration steps n = κ.

Note that step-5 of the updating rule implies that if tupdatedm yields a better per-

formance, i.e. (Pupdated − Pcurrent) < 0, the m−th node pair will change to updated

beamformer tupdatedm with high probability. Otherwise, it will keep the current trans-

mit beamformer with high probability. Note also that the tradeoff between COPMA’s
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performance and convergence speed is controlled by the parameter τ . Large τ rep-

resents extensive space search with slow convergence, whereas small τ represents

restrained space search with fast convergence. The smoothing factor τ is selected

to be a function of n such that as n increases, τ ↓ 0. For example, we choose τ

inversely proportional to n2 in our simulations. The long term behavior of COPMA

is characterized in the following theorem.

Theorem 5.4.1. Assume that the objective of each node pair is defined as sum power

minimization in the network as defined in (5.10). Let Θ(k) = [t1(k), t2(k), ..., tN(k)]
T

denote the profile of choices at step k in COPMA and Θ∗ = [t∗1, t
∗
2, ..., t

∗
N ]

T the optimal

profile. COPMA converges to the optimal NE with arbitrarily high probability. In

other words,

lim
τ→0

lim
k→+∞

P∗
τ (Θ(k) = Θ∗) = 1. (5.15)

Proof. The proof of Theorem 5.4.1 follows along the similar lines of the proof in [48] [64]

and [69]. Notice that the transmit beamformer selection with N players each with

Υ codebook size generates an N -dimensional Markovian chain on a finite state space

with ΥN states or different profiles. First, we study the analysis for two player games,

i.e. N = 2 dimensional case as shown in Fig. 5.2.

Let tm ∈ ∆m and tk ∈ ∆k be the choices of two players say m and k, and

assume that ∆ = ∆m = ∆k = [t1m, t
2
m, .., t

Υ
m]. The players m and k can choose a

transmit beamformer from ∆. Let Θij denote the state [tim, t
j
n] ∈ Υ2 where m−th

user selects i−th transmit beamformer tim and n−th user selects j−th transmit beam-

former tjn. At an arbitrary time instant, for any state of the Markovian chain, only

one of the players can update their transmit beamformer. Therefore, for example

in Fig.5.2, state Θij = [tim, t
j
n]

T can only transit into a state either in the same row

or the same column. For any fixed τ > 0, the transition probability from state
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θγj θγγθγ1

θ1j

Figure 5.2: Markov chain with two players for COPMA.

Θij = [tim, t
j
n]

T ∈ Υ2 to state Θlp = [tlm, t
p
n]

T ∈ Υ2 is given by

Pτ (Θlp|Θij) =
1

2Υ(1 + e(P(Θlp)−P(Θij))/τ )
, (5.16)

where Θij and Θlp differ in exactly one transmit beamformer selection, i.e. Θij ̸= Θlp

for i = l or j = p, τ is the smoothing factor of COPMA and P(Θij) is the minimum

total network power required to reach target SINR γ0 for both users at state Θij

calculated using (5.11) for each user. If Θij and Θlp are different in more than one

position, then Pτ (Θlp|Θij) = 0. In addition Pτ (Θij|Θij) > 0 is always true. Therefore,

for any fixed τ > 0, the induced Markov chain is irreducible and aperiodic.

The stationary distribution P∗
τ for each state can be obtained from the following
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balanced equations (using the arrows in Fig. 5.2):

Υ∑
p=1,p ̸=j

P∗
τ (Θij)× Pτ (Θip|Θij) =

Υ∑
p=1,p̸=j

P∗
τ (Θip)× Pτ (Θij|Θip), (5.17)

for all Θij ∈ Υ2 and Θip ∈ Υ2. Substituting (5.16) into (5.17) gives

Υ∑
p=1,p ̸=i

P∗
τ (Θij)×

1

2Υ(1 + e(P(Θip)−P(Θij))/τ )

=
Υ∑

p=1,p ̸=i

P∗
τ (Θip)×

1

2Υ(1 + e(P(Θij)−P(Θip))/τ )
.

(5.18)

Then, the stationary distribution of the induced Markov chain at step k is

obtained as

P∗
τ (Θ(k)) =

e−P(Θ(k))/τ∑
Θ̄(k)∈Υ2 e−P(Θ̄(k))/τ

, (5.19)

for arbitrary state Θ(k) ∈ Υ2. Hence from irreducibility and aperiodicity of the

Markovian chain, we have

lim
τ→0

lim
k→+∞

P∗
τ (Θ(k) = Θ∗) = 1, (5.20)

where Θ∗ ∈ Υ2. The result validates that COPMA converges to the optimal state

with arbitrarily high probability for two-player (N = 2) case. Finally, the analysis

can easily be extended for general multi-player (N > 2), N dimensional Markovian

chain cases as well.

With the above theorem, the transmit beamformer selection is shown to reach

the optimal Nash equilibrium solution with arbitrarily high probability. One disad-

vantage of cooperative based algorithms is that communication overhead incurred to

calculate the total network power increases with iterations. In the next section, we
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study a noncooperative learning algorithm using local information with less compu-

tations.

5.5 Regret-Matching based joint transmit beamformer and power Selection

Game (RMSG)

In this section, we want to obtain a distributed learning algorithm for joint trans-

mit beamformer and power selection scheme in MIMO ad-hoc networks. We will

use an utility function for noncooperative users. Note that the interaction among

N “selfish” node pairs can be defined as non-cooperative power minimization game

where each node pair is attempting to find their own transmit beamformers. In the

noncooperative joint iterative beamforming and power adaptation, the N node pairs

care only about their own power minimizations exclusively, rather than the overall

network power. Again, each player’s utility function depends on the transmit beam-

former and power of itself as well as those of other transmit beamformers and powers.

Note that noncooperative distributed beamforming algorithms for multi-user MIMO

ad-hoc networks lacks the quality of “strategic complementarities” [70] that are found

in power control-only games [59]. Therefore, it is thus not clear to design an ordered

set of actions for noncooperative beamforming games and deterministic convergence

analysis has not been followed yet. Hence, instead we study a noncooperative learn-

ing algorithm called the regret matching adaptive algorithm from [15], in which the

players choose their actions based on the regret for not choosing particular actions in

the past. The steady-state solution of the regret matching based learning algorithm

exhibits “no regret” and the probability of choosing a strategy is proportional to the

“regret” for not having chosen other strategies.

Denote t̄m as the vector of all strategies or actions for user m, i.e. t̄m =
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[t1m, t
2
m, ..., t

Υ
m] and tm(i) as the current selected transmit beamformer vector for the

m−th user at iteration i. Define the average regret vector Qt̄m
m (k) of user m for an

action vector t̄m at iteration (or time) k as

Qt̄m
m (k) =

1

k − 1

k−1∑
i=1

(um(̄tm, t−m(i))− um(tm(i))). (5.21)

In regret matching based joint transmit beamformer and power selection game (RMSG),

each user m computes Qt̄m
m for every action tm ∈ ∆m in all past steps when all other

player’s actions remain unchanged. Each player m updates its regret Qt̄m
m (k) for every

set of actions t̄m based on the following recursion formula,

Qt̄m
m (k + 1) =

k − 1

k
Qt̄m

m (k) +
1

k
(um(̄tm, t−m(k))− um(tm(k))). (5.22)

At every step k > 1, each user m updates its own average regret vector Qt̄m
m (k)

for every strategy in t̄m. In regret matching, after computing the average regret

vector, Qt̄m
m (k), each user m chooses an action or strategy tm(k), k > 1, according to

probability distribution χm(k) defined as

χt̄m
m (k) = Prob(tm(k) = t̄m) =

[Qt̄m
m (k)]+∑

t̄m∈∆m
[Qt̄m

m (k)]+
, (5.23)

where [x]+ denotes the non-negative part of x. Notice that in regret matching game,

each user m chooses a strategy tm ∈ ∆m at any step with probability proportional

to the average regret for not choosing that strategy tm ∈ ∆m in the past steps. The

detailed summary of RMSG in using Gauss-Seidel updating scheme [19] is given in

Table 5.1 where κ is the predefined number of iterations.

Note that every finite strategy game has a mixed strategy Nash equilibrium [12].

Therefore, for all finite games, using a proper learning algorithm, the game can be
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Table 5.1: Regret-Matching based joint transmit beamformer and power selection
game (RMSG) algorithm
Initialization: For each transmitting and receiving pair m, the initial transmit
beamformers are selected with equal probability, the initial transmit powers
are set as Pm = Pmax and the initial average regret vector is set as

Qt̄m
m (1) = 0, ∀m ∈ N .

Iteration:
For k = 1, 2, ..., κ

For m = 1, 2, ..., N

− Update the average regret vector Qt̄m
m (k) using the recursion

in (5.22)

− Update the probability distribution χt̄m
m (k) in (5.23) and

select the transmit beamformer tm(k) based on updated χt̄m
m (k).

− Calculate the new transmit power Pm based on selected tm(k)
using (5.11).

Next m
Next k

shown to converge to the fixed points of probability. The advantage of regret match-

ing based selection is that it is distributed and requires limited information exchange

between the users if the utility function is properly selected. It is also known that the

time-averaged behavior of regret-matching game converges almost surely (with prob-

ability one) to the set of coarse-correlated equilibrium [14] [68] [13] which is described

in Section 2.23. Therefore, the joint transmit beamformer and power selections con-

verges to fixed points of probability. In fact, in our joint transmit beamformer and

power selection game, the average regret of a user using regret matching becomes

asymptotically zero, which is confirmed by our simulations and can be modified for

future analytical convergence analysis. The utility function of noncooperative or

“selfish” users for the transmit beamformer and power selection at iteration k is

Um (tm, t−m(k)) = log(tHmH
H
m,mR

−1
m Hm,mtm). (5.24)
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Note that by using the above utility function each user is trying to maximize its

own “normalized” SINR, tHmH
H
m,mR

−1
m Hm,mtm, by selecting an appropriate transmit

beamformer tm ∈ ∆m. Note also that during selection process of the best transmit

beamformer using the above utility, each user can easily update the average regret in

the recursion formula (5.22) locally.

5.6 Simulation Results

In this section, we investigate the performance results of centralized optimization,

COPMA and RMSG. We assume that wireless ad hoc network has N homogeneous

pairs where each pair has one transmitter node and one receiving node. Each entry

in the channel matrix Hm,k ∀m, k ∈ N is assumed to be independent identically

distributed complex Gaussian distribution with zero mean and unit variance. We

consider a radio propagation with a path-loss exponent ν = 4. This implies that the

fading power is attenuated by d−4
m where dm is the distance between transmitter and

receiver for m−th node pair. The target SINR γ0 is selected to be 10 dB. We assume

that channels don’t vary during the iterations and the Grassmannian codebook of [54]

is used for the simulation results. The codebook size is selected to be Υ = 16 with

T = 3 antennas for all users. Pmax = 100 mW (20 dBm) and Pmin = 1 mW (0 dBm)

in our simulations. We assume six different transmit power levels: 1mW, 5mW,

20mW, 30mW, 50mW and 100mW motivated by the IEEE 802.11b standard in [71]

(Note that the transmit powers are selected from this discrete power level set which

corresponds to ceiling function of (5.11)). The selected network topologies are feasible

for the given power levels, i.e. the power levels are between Pmin and Pmax for all

Θ ∈ ΥN in the network (see also Section 5.31 for the necessary condition for the

existence of system feasibility region). The noise power is σ2 = 3.16× 10−13 W (−95
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dBm) which corresponds to approximate thermal noise power for a bandwidth of 20

MHz.

5.61 Small Networks

We first consider a small wireless ad-hoc network with 4 users, i.e. N = 4. All

transmitting and receiving nodes are randomly located in a square of 30m × 30m

area. We choose τ = 0.1/n2 in our simulations, where n denotes the iteration step.

The global optimum solution is obtained by enumerating all feasible strategies, i.e.

164 profiles, as the performance benchmark. The maximum number of iterations

is κ = 120 for COPMA and RMSG. The performances of total power is shown

in Fig. 5.3. As indicated by the “Centralized” curve, the global minimum power

solution obtained by this approach functions as the lower bound of the overall power.

We observe that COPMA’s performance increases with iterations and settles at the

global optimum combination after 92 iterations. Note that 68% and 76% of the

gain from using COPMA algorithm is realized within the first 59 and 83 iterations

respectively, although further improvement results from more iterations.

RMSG algorithm discussed in Section 5.5 is minimizing the total transmit

power in the network defined by (5.10) using the utility function (5.24) in a nonco-

operative manner. Fig. 5.3 also shows how the total power in the network varies over

120 iterations using RMSG. Note that RMSG yields inferior performance compared

to COPMA in terms of overall power. However, the updating procedure is noncoop-

erative and requires less overhead as the iterations continue. The total network power

converges to a value of 135 mW from the 68−th iteration whereas the centralized case

has 65 mW total network power. The steady state is reached when all the users select

a transmit beamformer index with probability one.

Fig. 5.4 and Fig. 5.5 depict the trajectories of transmit beamformer selection
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Figure 5.3: Total transmit power versus number of iterations with N = 4, T = 3 and
Υ = 16.
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Figure 5.4: Transmit beamformer indexes versus number of iterations in COPMA
with N = 4, T = 3 and Υ = 16.
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Figure 5.5: Transmit powers versus number of iterations in COPMA with N = 4,
T = 3 and Υ = 16.

indices and power trajectories in COPMA for each user in the network topology. At

the initialization step, each user starts with maximum power levels and first index

of transmit beamformer selections. Then, each user updates iteratively following

COPMA algorithm, until the optimum Nash equilibrium is achieved. Note that when

the transmit beamformers, Θ and power level vectors P converge in Fig. 5.4 and

Fig. 5.5, the corresponding overall transmit powers obtained by COPMA is shown

in Fig. 5.3. Therefore, the existence of NE and convergence into NE in COPMA is

corroborated by curves in Fig. 5.4 and Fig. 5.5.

Probability mass function (p.m.f): In this subsection, we take a look

at the probability mass function χt̄m
m of the RMSG algorithm calculated in (5.23).

Fig. 5.6 represents the change in the probability mass function after 1, 12, 50 and 100

iterations for one of the user. Initially, the users choose the strategies, i.e. transmit

beamformers, with equal probability where the strategies are represented by the in-
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dexes 1 to Υ = 16 in the x-axis and the probabilities of selecting these indexes are

on the y-axis. It is seen that after 12 iterations, the probability of choosing trans-

mit beamformer index 9 is higher than that for other transmit beamformer index,

although the other probabilities for indexes 3, 4 and 12 are not totally eliminated.

After 25 iterations, all other probabilities except those of 4 and 9 are eliminated.

A stationary point is reached when user 1 chooses transmit beamformer index 9 at

iteration 100.
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Figure 5.6: The probability distribution of RMSG for one of the users when N = 4.

5.62 Large Networks

We now consider a large wireless ad-hoc network with N = 10 node pairs randomly

located on a 100m × 100m area and smoothing factor for COPMA is selected as

τ = 200/n2 in order to search more efficiently in this huge strategy space. The

other simulation parameters are the same. Fig. 5.7 shows the network topology and
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transmit beampatterns of COPMA with N = 10 users. Note that the centralized

approach is no longer feasible in this scenario due to the enormous strategy space

(i.e. 1610 profiles).
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Figure 5.7: Node configuration and transmit beampatterns of COPMA with N = 10
users.

We again investigate both cooperative and regret-matching learning algorithms

represented by COPMA and RMSG curves, where the maximum number of iterations

is set to κ = 400 for COPMA and κ = 1500 for RMSG. COPMA’s performance is

close to optimal solution, thus provides a good benchmark to test the performance

of RMSG. Fig. 5.8 shows the total network power versus number of iterations for

COPMA and RMSG over increasing number of iterations. This figure shows that

RMSG’s performance is within 75.56% of the COPMA value at the end of iterations.

Furthermore, RMSG needs larger amount of iterations compared to COPMA for

the convergence. However, note that RMSG performs noncooperative update for

transmit beamformer and powers at each iterations and the amount of overhead is
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minimum. In RMSG algorithm, the total power converges to total network power

of 0.2250 W from the 1296−th iteration. The steady state for the joint selection of

transmit beamformer indexes and transmit powers is reached when “all” the users in

the network do not deviate from their chosen strategies. Note also that the majority

of users reach a steady state within 115 iterations. However, one of the user takes

longer than 1000 iterations to reach steady state.
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Figure 5.8: Total transmit power versus number of iterations with N = 10, T = 3
and Υ = 16.

Probability mass function (p.m.f): A similar figure for the probability

mass function of RMSG for one of the user that takes longer convergence than others

is shown in Fig. 5.9 for large network size with N = 10. As can be seen in Fig. 5.9,

the probability of choosing index 16 is higher than other indexes at iteration 500, but

the probability of choosing index 5 and 12 is not totally eliminated even after 1000

iterations. Since the network size is large, the learning process takes a longer time

to converge (around 1332 iterations) to steady-state transmit beamformer indexes,
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Figure 5.9: The probability distribution for one user when N = 10 in RMSG.

compared to small network case for RMSG algorithm.

5.7 Conclusions

In this chapter, we considered cooperative and noncooperative joint power control

and beamforming algorithms in multi-user MIMO ad-hoc networks. A cooperative

power minimization algorithm (COPMA) with high probability of convergence is

investigated for the cooperative scheme. For noncooperative users, we studied an

adaptive learning algorithm called RMSG, where the users updated their probabilities

of choosing a transmit beamformer and power based on the regrets of not choosing the

other strategies. Numerical results corroborated the convergence results of COPMA,

and the effectiveness of the COPMA’s performance in terms of comparison with

RMSG and the centralized case.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we investigated cost minimization problems for wireless networks

and studied three main contributions in terms of network energy minimization and

network throughput maximization for wireless sensor networks (WSNs) and network

power minimization for wireless ad-hoc networks.

In our first contribution, we addressed the problem of energy-efficient trans-

mission structure in WSNs where each source transmits and aggregates the correlated

data over intermediate nodes to the sink. We have investigated the impact of efficient

data aggregation in establishing routing paths towards the sink for energy minimiza-

tion problem. For correlation aware routing, we proposed a distributed iterative

protocol based on a game theoretic framework, which is shown to converge within a

couple of iterations. We have also shown that, by accounting for correlation structure

and multi-hop aggregation in constructing routes, significant effective energy gains

over classic approaches can be achieved.

In our second contribution, we presented a detailed investigation of efficient

throughput maximizing transmission structure in wireless sensor networks where each

source transmits and aggregates the correlated data over intermediates source nodes

to the sink. We have considered the impact of interference, as well as efficient data ag-

gregation in establishing routing paths towards the sink for throughput maximization

problem. For throughput maximizing correlation aware routing, we have proposed a

distributed iterative protocol based on a game theoretic framework, which is shown
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to converge within a couple of iterations. We have also shown that, by accounting for

both correlation structure and interference impact in constructing routes, significant

throughput gains over classic approaches can be achieved.

In our third contribution, we considered cooperative and noncooperative joint

power control and beamforming algorithms in multi-user multiple-input-multiple-

output (MIMO) ad-hoc networks using a game-theoretic approach. Under constant

signal-to-interference plus noise ratio requirements, the transmit beamforming selec-

tion algorithms from a predefined codeword are being studied in the context of total

network power minimization. We first considered a cooperative case where all users

collaborate with each other in order to minimize the overall power of the network. A

cooperative power minimization algorithm, (COPMA) with high probability of con-

vergence is investigated for the cooperative scheme. For noncooperative users, we

studied an adaptive learning algorithm called RMSG, where the users updated their

probabilities of choosing a transmit beamformer and power based on the regrets of

not choosing the other strategies. Numerical results corroborated the convergence

results of COPMA, and the effectiveness of the COPMA’s performance in terms of

comparison with the centralized case or optimal global solution which is found by

searching all feasible strategy space.

6.2 Future Work

Although we have investigated the optimization problems with total network energy

consumption reduction in Chapter 3 and throughput improvements in Chapter 4 for

routing of correlated data in WSNs, the ideas of the proposed game theoretic ap-

proach for correlated data aggregation scheme can be modified to favor other routing

metrics like end-to-end transmission delay minimization using mutual information
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accumulation in the network [72] by decreasing the load over overwhelmed bottleneck

nodes, total data accuracy improvements, data latency and security problems and

capacity maximization schemes. The joint optimization of multiple objectives, such

as minimizing delay or latency as well as maximizing network lifetime or throughput

can be another application area of the proposed methodology. Moreover, the utility

function can be modified to incorporate data aggregation cost into the network per-

formance for complex operations of data aggregation [25]. Instead of using the best

response dynamics, some of the distributed learning algorithms (e.g. regret-matching

learning algorithm discussed in Chapter 5 or simulated-annealing and genetic algo-

rithms) can also be applied to the energy minimization and throughput maximization

problems using the proposed utility functions to improve the efficiency and efficacy

of WSNs. Another possible area of study can be to extend the Nash equilibrium tree

configuration studied in our analysis and find Pareto optimal tree configuration for

the correlated data routing game problem.

The joint beamforming and power adaptation algorithm discussed in Chapter 5

can be extended by simultaneously adjusting the initial selected codebook according

to interference in the network. The codebook used in our analysis is designed for

single user scenarios. The codebook adaptation can be done by combining the initial

selected codeword with different weights and adjusting the weights iteratively depend-

ing on the interference each receiver observes in the environment. The evolutionary

algorithms, e.g. genetic algorithm [73] can be used to generate better codebook solu-

tions considering the multi-user interference. Other transmitter/receiver adaptation

parameters like modulation, frequency, rate, waveform etc. can also be appended

into the utility function of the proposed cooperative and noncooperative learning al-

gorithms. Moreover, the convergence proof to pure strategy NE of RMSG algorithm

can be studied for general game models.
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