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Abstract—Providing high quality and uninterrupted
network service is becoming crucial for service
providers. In this paper, we present an approach to
quantify and indicate service quality based on the topol-
ogy state transitions from the perspective of network
service provider. Building our model as a Finite State
Machine (FSM), we show novel application of ma-
chine learning (ML) classification algorithms to classify
appropriate states for undefined input alphabets in
FSM. In other words, we implement ML algorithms
to extract both service states and possible root causes
of service degradation only from measured certain
Key Performance Indicator (KPI) values that are ob-
served directly through network elements. We have
implemented our network topology state classification
approach using the dataset obtained in Graphical Net-
work Simulator 3 (GNS3) simulation environment, and
performed measurements to evaluate its prediction
accuracy. Additionally, we have identified priority of
relevant KPIs impacting the service quality. Our re-
sults indicate that network topology state changes can
be classified up to 88% accuracy and F1 scores using
ensemble learning methods such as Gradient Boosting
Classifiers.

Index Terms—network, log analysis, automation, ma-
chine learning.

I. Introduction

Emerging network technologies, such as 5G and Internet
of Things (IoT), adopt service-oriented architectures. This
leads to new business opportunities in both vertical and
horizontal markets. In this context, an important require-
ment will be accurate assessment of service quality. It
is a well-known argument that you can’t manage what
you can’t measure. In an environment where there are
so many services, it can be expected that automated
management of these services with zero touch would be
very appropriate for Mobile Network Operators (MNOs)
in the perspective of network operations. Therefore, it is
very important for network operators to provide healthier
services to their end-users over their networks. However, it
is not always possible to monitor the quality of provided
services due to several reasons such as privacy concerns of
end-users, abundance of service consumers, inability of the
service provider to observe service quality on the consumer
side and excessive workload. For these reasons, network
operators are mostly not aware of real-time quality and
operational aspects of the services they provide. Besides

service monitoring, finding the root cause of the problems
that affect service quality has very importance for MNOs.

As there is a visible tendency towards self-management
in network technologies, by exploiting the power of ris-
ing Artificial Intelligence (AI)/Machine Learning (ML)
techniques, it is time to (re)consider how to measure
and predict service status based on only the observable
parameters on the side of network providers. In this paper,
we open a relatively little studied issue of network service
management up for discussion, and propose a methodology
to classify network service quality state as well as find the
root cause of the network problem using ML technique of
classification. Although the Zero-Touch Service Manage-
ment (ZSM) [1] study managed by European Telecommu-
nications Standard Institute (ETSI) proposes a concept
for adapting ML to service management, low level details
such as which Key Parameter Indicators (KPIs) will be
used and using which architecture the ML algorithms will
be implemented, are not described yet. On the other hand,
ZSM focuses on services provided by the network and
management of these services which is a different concept
from the management of the network. In this study, ML
based service management is discussed at implementation
level. We also show feasibility of the proposed methodology
and the accuracy of the root cause classifications by means
of emulations using the data generated from Graphical
Network Simulator 3 (GNS3) simulation environment.

A. Related Work

There are many studies that are investigating the appli-
cation of ML techniques to the area of network manage-
ment and this area has been emerging in recent times.
However, these studies are mostly concerned with the
network management as a whole and are not focused
on specifically service management. In this sense, the
article [2] reviews the applications of fundamental ML
concepts on communication networks, and presents a case
study which aims at detecting abnormal elements in a
multi-layer real network using unsupervised ML. Another
paper [3] reviews the well-known ML concepts along with
their applications in the context of optical networks, and
discusses different aspects of ML implementations such as
algorithm choice, data and model management strategies,
and integration into existing network control and manage-
ment tools. The survey paper [4] provides an overview of



deep learning architectures and algorithms for controlling
network traffic, and surveys the state-of-the-art ML and
new deep learning researches in networking related areas.

There are also studies presenting implementations of ML
techniques to leverage autonomy and self-management ca-
pabilities while exploiting the available of networking data
[5]–[9]. These studies focus on improving ML techniques
for network management but do not provide a system
that is concentrating specifically on network services. For
example, the article in [5] considers the usage of ML for
cognitive network management, and provides a discussion
on how to defeat the bottlenecks and limiting factors for
the deployment of autonomic systems with ML. Similarly,
the study in [6] proposes a cognitive management frame-
work with unsupervised deep learning and probabilistic
generative models for network optimization. The paper
in [7] proposes a prediction model with deep learning for
internet traffic flow forecast in real-time. To build Self
Organizing Networks (SONs), the paper in [8] leverages
cellular mobile data to cluster the Base Stations (BSs) us-
ing unsupervised learning approaches so that inter-cluster
handover rates can be reduced. Similarly, the authors in
[9] predicts the number of potential user equipments (UEs)
in a given cell using Bayesian neural networks.

ML techniques and management of resources in phys-
ical or virtual environments are also well studied in the
literature [10]–[13]. The study in [10] considers the prob-
lem of resource management in virtual networks, and
presents the implementation of a distributed reinforcement
learning algorithm to allocate resources dynamically in
virtual network environment. Similarly, another study in
[11] examines dynamic resource assignments for Virtual
Network Functions (VNFs) using a method based on
neural networks to estimate service degradation from
observable performance data. The work in [12] explores
the application of ensemble learning models to multiple
network measurement problems, and introduces a generic
ML model for the analysis of network measurements. The
study in [13] presents two examples of ML implementation
for control and management in optical networks. However,
these studies do not identify the root causes of problems
especially in service management domain. In our study,
the root cause of service problems is determined by ML.

B. Our Contributions

In this paper, we consider the problem of network service
management for MNOs, which is an important issue in
compliance with the Service Level Agreement (SLA) be-
tween a service provider and end-users. Since SLAs usually
define the required level of service expected from the ser-
vice provider, real-time monitoring of the provided service
quality is a top priority for network service providers.
For this purpose, we define several network service states,
each of which represents different levels of service qual-
ity provided by the network infrastructure. To classify
these network states together with their corresponding

Fig. 1: The architecture of the predictive service manage-
ment system with data collection and processing entities.

root causes without relying on any information from the
end-user side, we develop a methodology based on ML
techniques. We use KPI values of the active underlying
network topology for our classification purposes. More-
over, we prioritize these KPIs according to their impact
on service quality by performing experimental evaluations
using the data generated from GNS3 with real network
configurations on routers and switches. On the theoretical
side, we present formal definition of our problem of in-
terest by formulating our model as a Deterministic Finite
Automata (DFA), and show how we use ML to find likely
states in Finite State Machine (FSM) for undefined input
alphabets. This paper is also introducing the experimented
dataset which is provided to IEEE DataPort platform as
well as related ML algorithms that we have studied for root
cause analysis purposes. We experimentally show that the
proposed methodology can classify network service states
together with their root causes up to 88% accuracy and F1
scores using ensemble learning methods such as Gradient
Boosting Classifiers.

II. Designing Network Service for Predictive
Management

Service providers design their networks in a redundant
way in terms of physical connections to provide uninter-
rupted services to their end-users. This is also the case
for the protocols used for routing and switching where
all network configurations are made to run the network
in a redundant form. With the help of redundant design,
uninterrupted service can be provided in case some inter-
ruptions exist in a given route by accessing into an alterna-
tive route. Fig. 1 depicts a service provider network with
two backup planes that contain primary and redundant
routes planned for a service as well as data collection and
processing entities. When designing Wide Area Networks
(WANs), it is not expected to deploy as many connections
and equipment as in typical local area networks due to
operating expenditure (OPEX) and capital expenditure
(CAPEX) constraints. In fact, the underlying backbone



network of MNOs consists of two planes as the upper plane
and the lower recovery plane. There are certain points
where transitions are achieved between the two planes.
The number of these transition points where the network
traffic is flowing may vary depending on network design
and the devices that can be deployed redundantly at these
important transition points.

One of the important steps for the correct operation
of the service providers’ networks is to design the service
routing paths to be installed for new internal or external
end-users on the network. These network services can be
any Layer 2 (L2) or Layer 3 (L3) services. End-users may
want to use these services in either redundant or non-
redundant mode based on their service requirements and
tariffs. However, in practical systems most of the services
are used in redundant mode. In this case, the planning
units that are designing the network should plan the plane
of the primary and the secondary paths of the service.
Considering that there are hundreds of services within a
network, this design phase is important to put less load on
the same points with regard to capacity, capabilities and
network robustness requirements. Depending on whether
the service is L2 or L3, some of the redundancy ser-
vices and techniques such as Virtual Router Redundancy
Protocol (VRRP), Virtual Private LAN Services (VPLS),
Routed VPLS (R-VPLS), Link Aggregation Group (LAG),
Multi-Chassis Link Aggregation Group (MC-LAG), Multi-
Protocol Label Switching Traffic Engineering (MPLS-TE)
and Multiprotocol Extensions for Border Gateway Proto-
col (MP-BGP) attributes, etc. can be utilized.

A. Monitoring the Status of the Service

The performance of any network service can be mon-
itored by means of probes which are put into user end-
points. In this case, via the IP-SLA tests which will run
continuously on the probes, the performance status can
be observed with tests such as iPerf. However, this obser-
vation is limited only to the performance of the service
and does not contain adequate information regarding the
root cause of the problems on the service. In this way, it is
impossible to determine the effect of a problem caused by
the provider network on the service. Once the problem has
been detected by means of probes, operators can perform
root cause analysis by manually operating fault manage-
ment processes. In addition, these probe tests focus more
on the correct operation of the services rather than service
planning of the MNO. However from the perspective of
the service provider, running each separate services as
planned is critical for the correctness and robustness of
the provided services over the network infrastructure.

Regarding the impacts of certain network problems on
service status, the link or node failures are quickly detected
by routing and transport protocols and the traffic direction
is updated instantly to avoid service interruptions. On the
other hand, when there is a faulty link causing packet
losses a degradation occurs in packet delivery ratio at

the network layer. Such an issue arising in the physical
channel is mostly not be taken into consideration by the
underlying routing protocol. Hence, service interruptions
may be experienced while network traffic flows through
such a faulty link. The same issue may also be experienced
in the presence of faulty nodes caused by hardware or
software defects. For this reason, the fault types causing
to utilize poor channels in service delivery are identified
within the problem types leading to Fair state, whereas
the fault types causing sharp disconnections on a path are
identified within those leading to Good state. Faulty link
is the link that creates delay, packet error, burst error and
packet drops. Faulty link can include one or more of these
four conditions.

B. Formal Definition of the Proposed Model

In this subsection, we construct formal description of our
model using finite automata theory. To do so, we specify 4
discrete service quality states that are determined based on
certain network level KPI values. These states are shown
in set Q and described below:

Q = {Best,Good, Fair,Bad}

where

• Best: The underlying network topology supporting
to the service and all related KPI values are as they
should be.

• Good: The underlying network topology supporting
to the service is changed with respect to the original
setting due to node failure, link failure or incorrect
configuration of routing, and minority of the related
KPI values are not within the expected range.

• Fair: The underlying network topology supporting to
the service is changed due to faulty node, faulty link
or bandwidth saturation, and majority of the related
KPI values are not within the expected range.

• Bad: There is faulty network element particularly
at the service end point in the underlying network
topology, and most of the related KPI values are out
of the required range.

We use these states to quantify and represent service
quality levels based on observed cumulative KPI values.
Transition from one state to another one takes place

Fig. 2: Finite state machine and state change transitions
between Best, Good, Fair and Bad topologies.



depending on variations of KPI values. From this, we
build a FSM corresponding to our model along with state
diagrams and transition relations as shown in Figure 2.
This is a DFA (Deterministic Finite Automata) as the
machine goes to one state only for any particular input.
We define our state machine with a five-element tuple:
(Q,Σ, δ1, q0, F ) where Q is a finite set of states, Σ is a set
of input alphabet, δ1 is transition functions, q0 is initial
state and F is set of final states.

The input alphabet, Σ, is comprised of a set of KPIs.
Let S be the set of KPIs that we are interested in.

S =
[
xi,j

]
n×m

where xi,j is a KPI value. In this matrix representation,
each column contains values for a particular KPI at differ-
ent times, whereas each row includes values for all KPIs
at a specific time. This implies that there are m KPIs and
n instances. Each row comprises an input alphabet.

Σ = {x1, x2, ..., xn}

where xi is a vector and corresponds to an input alphabet.
The transition function, δ1, determines the next state

based on current state and input alphabet. Thus, we can
formulate it as follows:

δ1 : Q× Σ 7−→ Q

Notice that there might be some input alphabets un-
defined in the DFA, which makes the DFA incomplete.
This is actually inevitable in our use case especially when
considering that there are a lot of KPI types which takes
continuous values. Therefore, it is almost impossible to
cover all possible input alphabets. This is where our ML
model comes into play. We employ ML techniques as a
generalization tool in the sense that it predicts likely states
for undefined inputs based on given transition function. To
the best of our knowledge, this is first study that use ML
for predicting states in a DFA for undefined inputs. Our
approach, thus, enables to avoid deadlock states in FSM
as well.

On the other hand, there are specific root causes of KPI
variations such as node or link failures, faulty network
elements, route change, protocol down, and more. Let R
denote this set of root causes as follows:

R = {r1, r2, ....., rt},

where ri for i = 1, 2, ..t represents a specific root cause.
There is a causal relationship between root causes and KPI
values. We show this relationship with another function δ2
as follows:

δ2 : Q× Σ 7−→ R

Now we can define our ML problem based on given
functions and sets above. Let Σ∗ be a set containing all
undefined input alphabets in the DFA.

Fig. 3: Simulation setup.

Σ∗ = {xn+1, xn+2, ..., xn+t}

Problem Definition (Multilabel Classification):
Given δ1, δ2 and Σ∗, calculate δ∗1 and δ∗2 such that
δ∗1 : Q× Σ∗ 7−→ Q and δ∗2 : Q× Σ∗ 7−→ R.

Notice that in this model δ1 and δ2 constitute training
set of data, details of which are described earlier, whereas
δ∗1 and δ∗2 correspond to set of test data. ML algorithm,
basically, constructs an advanced regression model based
on the training dataset to find correct classification of
unknown service states and related root causes in the test
dataset.

III. Simulation Results

A. Emulation Environment

We have prepared our emulation setup using the GNS3
emulator environment, which is close to real systems.
The configurations on routers are based on a real Inter-
net Protocol (IP)/Multiprotocol Label Switching (MPLS)
network. MPLS operates in Label Distribution Protocol
(LDP) mode and Open Shortest Path First (OSPF) is
used as a routing protocol. All routers are in the area 0.
MP-BGP has been activated for Virtual Private Network
(VPN) services. An L2 service has been opened between
the service-end-node-1 connected to the R1 router and the
service-end-node-2 connected to the R5 router as shown in
Fig. 3. The primary path of the service was determined
to be R1-R4-R5 and is more likely to go through the
lower plane. In other words, this is the appropriate path
of the service at the design stage and it is expected to
go through this route when there are no problems. The
redundant path is the R1-R2-R5 path that uses the upper
path. In order to not to be affected by failures on link and
router and perform continuous data transfer, the servers
are connected to the switches. In case the servers are
connected to a router and a problem exists with this
router, all network connections will be disconnected during
data collection process. On the other hand, data can be



TABLE I: All features and their corresponding descriptions of the dataset in [14]

Feature Description Feature Description Feature Description

sysUpTimeInstance
System

open time
IFInUnknownProtos(∗)

number of
unreadable packets

from port
IFOutErrors(∗)

Number of incorrect
packets outgoing

from port

IFAdminStatus(∗)
administrative open

or closed state
of the port

IFLastChange(∗)
time elapsed when
the port was last
opened or closed

IFOutOctets(∗)
total number of
packets outgoing

from port

IFInDiscards(∗)
Number of incoming

dropped packets
IFMtu(∗)

Maximum size of
the Ethernet packet

through the port
IFOutQLen(∗)

Number of
pending queues

in port

IFInErrors(∗)
number of incorrect
packets received at

incoming port
IFOperStatus(∗)

whether the port
works or not

IPCidrRouteNextHop &

IPCidrRouteType (∗)

Routing Table:
Next Hop
& Type

IfInOctets(∗)
Total number of

packets received at
incoming port

IFOutDiscards(∗)
number of outgoing

packets that are
dropped on port

IPFragFails
Number of

non-fragmantable
IP packets

IPInAddrErrors

The number of input
datagrams discarded

due to header’s
destination field

was not valid

memory usage Memory Usage tunnel uptime Service duration

IPInHdrErrors

The number of
input IP

datagrams discarded
due to errors

in their IP headers

tunnel received byte
Number of

packets received
from service

tunnel unsent

Number of
packets that

cannot be sent
in service

IPOutDiscards

The number of
output datagrams
discarded due to

IPv4 header’s
destination field
was not a valid

tunnel resend
Number of packets

retransmitted
in service

CPU usage CPU Usage

IPReasmReqd
Number of IP

packets that can
not be reassembled

tunnel sent bytes
Number of

packets sent
from service

class
represents 23
distinct root

causes

TABLE II
States of the network services and their corresponding root causes defined from quality and

service design perspectives.

Service State Quality Status
Service Design Status Problem Type Root Cause

Best Stable As planned - No root cause - Routing Path (R1,R4,R5)

Good Stable Not as planned - Node Failure on the Path
- Link Failure on the Path
- Incorrect Configured Routing/
Transport Protocol in the Network

- Failure R2, - Failure R3
- Failure R4, - Failure R6
- Failure R2 and R4
- Link Fail R1 to R2,
- Link Fail R1 to R3
- Link Fail R1 to R4,
- Link Fail R4 to R5
- Link Fail R1 to R2

and R1 to R4
- Routing Changed over R2

Fair Not Stable Ignored - Faulty Node on the Path
- Faulty Link on the Path
- Service Bandwidth Saturation

- Faulty R2, - Faulty R3
- Faulty R4, - Faulty R5
- Faulty Link R1 to R2,
- Faulty Link R1 to R3
- Faulty Link R1 to R4,
- Faulty Link R4 to R5
- Load Traffic

Bad No Service Ignored - Service End Node Failure
- Protocol Failure in Network/Service

- Failure R5
- Protocol Down in Service

collected continuously by using switches. Data collection
and processing entity is run in the same server due to the
constraints of the simulation environment. All KPI data
were collected from both R1 and R5 routers expressing
the start and end points of the service. The L2 service
is a point-to-point virtual leased line service. We also
assigned a quality-of-service (QoS) value to this service,
and put the service’s bandwidth limit to 5 Mbps. We

created traffic on both service end-nodes using iPerf. To
generate service traffic, we have mutually generated two-
sided User Datagram Protocol (UDP) traffic.

B. Dataset and training process

We have introduced our dataset used in our analysis
via IEEE Dataport web portal [14] in csv format. Table I
summarizes all the features and their corresponding de-



TABLE III: IP address vs type mapping used for feature naming in [14]

IP Address Type IP Address Type IP Address Type
0.0.0.0 type0 192.168.3.0 type30 192.168.8.2 type82
1.1.1.1 type1 192.168.4.0 type40 192.168.9.0 type90
3.3.3.3 type3 192.168.5.0 type50 192.168.9.2 type92
4.4.4.4 type4 192.168.5.2 type52 192.168.10.0 type100
5.5.5.5 type5 192.168.6.0 type60 192.168.30.0 type300
6.6.6.6 type6 192.168.7.0 type70 192.168.40.0 type400

192.168.2.0 type20 192.168.8.0 type80 192.168.60.0 type600

Fig. 4: Root cause measurement distribution of the col-
lected dataset.

Fig. 5: T-SNE plot of two root causes.

scriptions in our dataset. Some of the features marked with
(*) have multiple consecutive values, hence there exists
130 features where 27 of them are shown in Table. I. In
our dataset, we have done feature name summarization of
next hop and type of the routers where Table III shows the
mapping between the IP address versus type used during
our feature naming stage for the dataset. Based on our
classification metrics, a total of 1110 rows of measurements

TABLE IV
Different classifiers’ test accuracy, precision,

recall and F1 scores.

Classifier Accuracy Precision Recall F1 Score
LR 0.81 0.81 0.81 0.81
DT 0.83 0.83 0.83 0.83
GB 0.88 0.88 0.88 0.88
RF 0.87 0.87 0.87 0.87

of different KPIs exists. Together with our classification
algorithms, we try to classify each network measurement
obtained on R1 into one of 23 root cases corresponding to
each network topology as outlined in Table II.

The configuration errors and undesired network topol-
ogy state changes can be created by MNO’s operational
units. We’ve collected the above 130 KPIs for situations
where the network works the best and the service works
as planned. We then created problems with all nodes and
links starting from the primary path. In this way, the
problems at the network level carrying the service were
obtained as trained data. Node failure, node reboot, link
failure, link flap, link error, link packet drop, link delay,
routing problems and their variations are some of the
network level problems. Service level training data is gen-
erated after occurrence of network level problems. These
are problems that can occur within the service itself and
are affecting the end-users’ service. These problems have
no effect on network level because the service is already
limited to a bandwidth. Service interrupt, service failure
and service bandwidth saturation data are generated as
service training data.

C. Exploratory Data Analysis

Fig. 4 shows the class distribution percentages inside the
dataset. In our dataset, we have 23 distinct root causes
where top three root causes Fair − Faulty R4, Good −
Link Fail R1 to R3 and Good−Link Fail R1 to R2 are
with 5.68%, 5.5% and 5.4% respectively.

The dimension of the features in our dataset is large
to be visualized. Fig. 5 shows the t-Distributed Stochas-
tic Neighbor Embedding (T-SNE) plot of two classes
to visualize their nature. T-SNE is a technique that
is used for data visualization purposes. For this, we
have used top two components with maximum informa-
tion. Each dot in the Fig. 5 represents a measurement.
BestRoutingPathR1 − R4 − R5 is represented by green
color and FairFaultyLinkR1toR2 is represented with red
color. From observing this figure, we can observe that some
of the measurements are close to each other, hence it is
not an easy task to classify all root causes accurately with
simplistic models (e.g. using linear classifiers).

In Fig. 6, we plot the boxplot distribution of the two
selected KPIs namely CPUusage and ifLastChange.1
which have been in top 5 of the feature importance list as
given in Fig. 7 in next section. These plots indicate that
some distinctive values of the selected KPIs exists that can
yield insights into obtaining better classification accuracy.



(a) (b)

Fig. 6: Boxplot over classes (a) CPU utilization (b) ifLastChange.1 feature

(a) (b)

Fig. 7: Top 16 features and their corresponding importance values for the (a) DT classifier. (b) RF classifier.

D. Analysis Results

To analyze the behaviour of our approach, we have
performed the classification of each row data generated
from different KPI values at each instant t for a given
router R1 as shown in Fig 3. Note that without loss of
generality, similar classification analysis and observation
of data can also be done with observing the data over the
other remaining routers. To analyze the accuracy of our
model, we conducted a series of experiments. We com-

pare the performances of Logistic Regression (LR) [15],
Decision Tree (DT) [16], Radio Frequency (RF) [17] and
Gradient Boosting (GB) [18] classifiers over the observed
dataset. The 130 KPIs specified for all training data were
continuously collected during the entire data collection
process. For our analysis purposes, we have standardized
the features by removing the mean and scaling to unit
variance. We have also selected 80% for training and
the remaining 20% of the dataset for testing purposes



using stratifiedKfold to create class balanced training and
test dataset [19]. To explore the most suitable classifier
attributes and hyper-parameters, we utilized grid search.

Fig. 7 depicts the feature importance values of the
DT and RF classification algorithms. For DT classifier,
the top five important features are IFLastChange 1,
memory usage, , IFLastChange 4, IFLastChange 2
and IFLastChange 4 with importance values of
0.33, 0.27, 0.09, 0.07, 0.04 respectively and for RF classifier,
the top five important features areifLastChange.4,
ifLastChange.3, ifLastChange.1, memoryusage
and ipInAddrErrors with importance values of
0.056, 0.0548, 0.0523, 0.0498, 0.0463 respectively. In this
notation, as an example IFLastChange 1 corresponds to
first value of the IFLastChange feature.

Finally, Table IV summarizes the accuracy, precision,
recall and F1 scores of LR, DT, RF and GB classifiers. The
parameters for RF are n estimators = 150, max depth =
20, for GB n estimators = 100, max depth = 3 and
learning rate = 0.1, for LR max iter = 1000 and for DT
max depth = 14, min samples leaf = 1 are selected to
be after grid search hyper-parameter optimization process.
From Table IV, we can observe that GB classifier outper-
forms the others with 0.88 accuracy followed by RF, DT
and LR with 0.87, 0.83 and 0.81 accuracy respectively.
When F1 scores are compared, similar alignments of the
observed classifiers are observed to occur.

IV. Conclusions

In this paper, we have focused on network service
management problem of MNOs. As an attempt to solve
this problem, we proposed a ML based framework that
helps to measure service quality in predefined states (i.e
good, fair, medium and bad), and also determine the
different root causes based on these states and KPIs
measurements. We established our formal model as a
FSM, and presented a novel usage of ML techniques to
determine most appropriate states in FSM for undefined
input alphabets. The implementation of our approach is
done using the data generated from the GNS3 network
emulator platform with realistic configurations of switches
and routers which is also published into IEEE’s DataPort
platform. Furthermore, we identified the most significant
KPIs that have impact on service quality using various
ML approaches on the generated synthetic network data.
Our results have indicated that among all investigated
classification algorithms, GB has provided higher accuracy
and F1 scores with 88%. Our presented approach shows a
promising use case of application of ML for automation in
network service management.

V. Acknowledgements

This work was partially funded by Spanish MINECO
grant TEC2017-88373-R (5G-REFINE) and by General-
itat de Catalunya grant 2017 SGR 1195 and partially

supported by The Scientific and Technological Research
Council of Turkey in part under 1515 Frontier R&D
Laboratories Support Program with project no: 5169902.

References

[1] ETSI Specification, “Zero touch network and Service Manage-
ment (ZSM); Proof of Concept Framework.” https://bit.ly/
2k6vusj, 2018. [Online; accessed 21-June-2019].

[2] D. Cote, “Using machine learning in communication networks
[invited],” IEEE/OSA Journal of Optical Communications and
Networking, vol. 10, pp. D100–D109, Oct 2018.

[3] D. Rafique and L. Velasco, “Machine learning for network
automation: overview, architecture, and applications [Invited
Tutorial],” IEEE/OSA Journal of Optical Communications and
Networking, vol. 10, no. 10, pp. 126–143, 2018.

[4] Z. M. Fadlullah et al., “State-of-the-art deep learning: Evolving
machine intelligence toward tomorrow’s intelligent network traf-
fic control systems,” IEEE Communications Surveys Tutorials,
vol. 19, pp. 2432–2455, Fourthquarter 2017.

[5] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar,
R. Boutaba, F. Estrada-Solano, and O. M. Caicedo, “Machine
learning for cognitive network management,” IEEE Communi-
cations Magazine, vol. 56, pp. 158–165, Jan 2018.

[6] M. Zorzi, A. Zanella, A. Testolin, M. D. F. De Grazia, and
M. Zorzi, “Cognition-based networks: A new perspective on net-
work optimization using learning and distributed intelligence,”
IEEE Access, vol. 3, pp. 1512–1530, 2015.

[7] W. Wang et al., “A network traffic flow prediction with deep
learning approach for large-scale metropolitan area network,”
in NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, pp. 1–9, April 2018.

[8] O. Narmanlioglu and E. Zeydan, “Mobility-aware cell clustering
mechanism for self-organizing networks,” IEEE Access, vol. 6,
pp. 65405–65417, 2018.

[9] O. Narmanlioglu, E. Zeydan, M. Kandemir, and T. Kranda,
“Prediction of active ue number with bayesian neural networks
for self-organizing lte networks,” in 2017 8th International Con-
ference on the Network of the Future (NOF), pp. 73–78, IEEE,
2017.

[10] R. Mijumbi et al., “Design and evaluation of learning algo-
rithms for dynamic resource management in virtual networks,”
in 2014 IEEE Network Operations and Management Symposium
(NOMS), pp. 1–9, May 2014.

[11] T. Kawabata, T. Kurimoto, and K. Mizutani, “Toward preven-
tive network service management by neural networks,” in 2018
IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), pp. 125–126, June 2018.

[12] P. Casas, J. Vanerio, and K. Fukuda, “Gml learning, a generic
machine learning model for network measurements analysis,”
in 2017 13th International Conference on Network and Service
Management (CNSM), pp. 1–9, Nov 2017.

[13] A. P. Vela, M. Ruiz, and L. Velasco,“Examples of machine learn-
ing algorithms for optical network control and management,”
in 2018 20th International Conference on Transparent Optical
Networks (ICTON), pp. 1–4, July 2018.

[14] Yekta Turk and Engin Zeydan and Zeki Bilgin , “The Good,
The Bad and The Fair: KPIs from Network Elements, IEEE
Dataport.” dx.doi.org/10.21227/1bm6-wa12.

[15] Scikit-learn, “Linear classifiers (SVM, logistic regression, a.o.)
with SGD training.” https://bit.ly/2Iu28NQ, 2019. [Online;
accessed 08-April-2019].

[16] Scikit-learn, “Decision Tree Classifier.” https://bit.ly/
2WEHy2E, 2019. [Online; accessed 08-April-2019].

[17] Scikit-learn, “Random Forest for Classification.” https://bit.ly/
2C3ICoi, 2019. [Online; accessed 08-April-2019].

[18] Scikit-learn, “Gradient Boosting for Classification.” https://bit.
ly/2IVUrz8, 2019. [Online; accessed 08-April-2019].

[19] Scikit-learn, “Stratified K-Folds cross-validator.” https://bit.ly/
2KtkH7i, 2019. [Online; accessed 08-April-2019].


